Skip to main content

Advertisement

Log in

What is the best design for reverse total shoulder arthroplasty in 2022?

Welches ist das beste Design für eine inverse Schulterprothese im Jahr 2022?

  • Review Article
  • Published:
Obere Extremität Aims and scope Submit manuscript

Abstract

Since the 1970s, numerous designs of reverse shoulder arthroplasty (RSA) have been proposed, and in 1994, Grammont came up with the third variation of his Delta Reverse, which facilitated pain relief and recovery of overhead motion in the cuff-deficient arthritic shoulder. These satisfactory results have led to an expansion in the indications including to younger more active patients and also to patients with an intact rotator cuff. However, over time, surgeons have identified adverse effects related to the design of the implant. Thus, the field has seen a push for advances in the design of the different components of the RSA as well as in the positioning of these implants. The objective of this review paper is to a) provide a comprehensive overview of the developments in the design of the components of RSA and to b) identify the best combination of components for RSA in 2022.

Zusammenfassung

Seit den 1970er-Jahren hat wurden zahlreiche Vorschläge für die Gestaltung der inversen Schulterendoprothese (RSA) gemacht, und 1994 stellte Grammont die dritte Variante seines Delta-Reverse-Modells vor, mit welcher die Schmerzlinderung und die Wiederherstellung der Überkopfbewegung in der arthritischen Schulter mit Rotatorenmanschettendefekt erleichtert wurden. Diese zufriedenstellenden Ergebnisse führten zur Ausweitung der Indikationen auch auf jüngere, aktivere Patienten und auf Patienten mit intakter Rotatorenmanschette. Jedoch wurden mit der Zeit unerwünschte Auswirkungen durch Chirurgen festgestellt, die mit dem Design des Implantats zusammenhängen. Deshalb gab es einen Schub für Fortschritte in diesem Bereich in Bezug auf die Gestaltung der unterschiedlichen Bestandteile der RSA sowie im Hinblick auf die Positionierung solcher Implantate. Ziel der vorliegenden Übersichtsarbeit ist es, a) einen umfassenden Überblick über die Entwicklungen beim Design der Komponenten für die RSA zu geben und b) die beste Kombination aus den Komponenten für eine RSA im Jahr 2022 zu ermitteln.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Flatow EL, Harrison AK (2011) A history of reverse total shoulder arthroplasty. Clin Orthop Relat Res 469(9):2432–2439

    PubMed  PubMed Central  Google Scholar 

  2. Baulot E, Chabernaud D, Grammont PM (1995) Results of Grammont’s inverted prosthesis in omarthritis associated with major cuff destruction. Apropos of 16 cases. Acta Orthop Belg 61(Suppl 1):112–119

    PubMed  Google Scholar 

  3. Boileau P, Watkinson D, Hatzidakis AM, Hovorka I (2006) Neer Award 2005: The Grammont reverse shoulder prosthesis: results in cuff tear arthritis, fracture sequelae, and revision arthroplasty. J Shoulder Elbow Surg 15(5):527–540

    PubMed  Google Scholar 

  4. Mulieri P, Dunning P, Klein S, Pupello D, Frankle M (2010) Reverse shoulder arthroplasty for the treatment of irreparable rotator cuff tear without glenohumeral arthritis. J Bone Joint Surg Am 92(15):2544–2556

    PubMed  Google Scholar 

  5. Mizuno N, Denard PJ, Raiss P, Walch G (2013) Reverse total shoulder arthroplasty for primary glenohumeral osteoarthritis in patients with a biconcave glenoid. J Bone Joint Surg Am 95(14):1297–1304

    PubMed  Google Scholar 

  6. Ladermann A, Walch G, Denard PJ, Collin P, Sirveaux F, Favard L et al (2013) Reverse shoulder arthroplasty in patients with pre-operative impairment of the deltoid muscle. Bone Joint J 95-B(8):1106–1113

    CAS  PubMed  Google Scholar 

  7. Elhassan BT, Wagner ER, Werthel JD, Lehanneur M, Lee J (2018) Outcome of reverse shoulder arthroplasty with pedicled pectoralis transfer in patients with deltoid paralysis. J Shoulder Elbow Surg 27(1):96–103

    PubMed  Google Scholar 

  8. Chae SW, Kim SY, Lee H, Yon JR, Lee J, Han SH (2014) Effect of baseplate size on primary glenoid stability and impingement-free range of motion in reverse shoulder arthroplasty. BMC Musculoskelet Disord 15:417

    PubMed  PubMed Central  Google Scholar 

  9. Roche CP, Stroud NJ, Flurin PH, Wright TW, Zuckerman JD, DiPaola MJ (2014) Reverse shoulder glenoid baseplate fixation: a comparison of flat-back versus curved-back designs and oval versus circular designs with 2 different offset glenospheres. J Shoulder Elbow Surg 23(9):1388–1394

    PubMed  Google Scholar 

  10. James J, Huffman KR, Werner FW, Sutton LG, Nanavati VN (2012) Does glenoid baseplate geometry affect its fixation in reverse shoulder arthroplasty? J Shoulder Elbow Surg 21(7):917–924

    PubMed  Google Scholar 

  11. Gumina S, Grassi F, Paladini P (2019) Reverse shoulder arthroplasty—Current techniques and complications. Springer, Cham

    Google Scholar 

  12. Karelse A, Leuridan S, Van Tongel A, Piepers IM, Debeer P, De Wilde LF (2014) A glenoid reaming study: how accurate are current reaming techniques? J Shoulder Elbow Surg 23(8):1120–1127

    PubMed  Google Scholar 

  13. Nyffeler RW, Werner CM, Gerber C (2005) Biomechanical relevance of glenoid component positioning in the reverse Delta III total shoulder prosthesis. J Shoulder Elbow Surg 14(5):524–528

    PubMed  Google Scholar 

  14. Churchill RS, Brems JJ, Kotschi H (2001) Glenoid size, inclination, and version: an anatomic study. J Shoulder Elbow Surg 10(4):327–332

    CAS  PubMed  Google Scholar 

  15. Boileau P, Gauci MO, Wagner ER, Clowez G, Chaoui J, Chelli M et al (2019) The reverse shoulder arthroplasty angle: a new measurement of glenoid inclination for reverse shoulder arthroplasty. J Shoulder Elbow Surg 28(7):1281–1290

    PubMed  Google Scholar 

  16. Middernacht B, Van Tongel A, De Wilde L (2016) A critical review on prosthetic features available for reversed total shoulder arthroplasty. Biomed Res Int 2016:3256931

    PubMed  PubMed Central  Google Scholar 

  17. Harman M, Frankle M, Vasey M, Banks S (2005) Initial glenoid component fixation in “reverse” total shoulder arthroplasty: a biomechanical evaluation. J Shoulder Elbow Surg 14(1 Suppl S):162S–167S

    PubMed  Google Scholar 

  18. Norris T, Kelly JD, Humphrey CS (2007) Management of glenoid bone defects in revision shoulder arthroplasty: a new application of the reverse total shoulder prosthesis. Tech Shoulder Elbow Surg 8(1):37–46

    Google Scholar 

  19. Valenti P, Sekri J, Kany J, Nidtahar I, Werthel JD (2019) Benefits of a metallic lateralized baseplate prolonged by a long metallic post in reverse shoulder arthroplasty to address glenoid bone loss. Int Orthop 43(9):2131–2139

    PubMed  Google Scholar 

  20. Boileau P, Morin-Salvo N, Gauci MO, Seeto BL, Chalmers PN, Holzer N et al (2017) Angled BIO-RSA (bony-increased offset-reverse shoulder arthroplasty): a solution for the management glenoid bone loss and erosion. J Shoulder Elbow Surg 26(12):2133–2142

    PubMed  Google Scholar 

  21. Grammont PM, Deries X (1987) Etude et réalisation d’une nouvelle prothèse d’épaule. Rhumatologie 39:407–418

    Google Scholar 

  22. Muller AM, Born M, Jung C, Flury M, Kolling C, Schwyzer HK, et al. (2018) Glenosphere size in reverse shoulder arthroplasty: is larger better for external rotation and abduction strength? J Shoulder Elbow Surg 27(1):44–52. Epub 2017/07/28

    PubMed  Google Scholar 

  23. Terrier A, Faron A (2010) Biomechanical rationale for BIO RSA and metallic lateralization. Shoulder concept 2010. Glenoid 2010. editor. Montpellier, France: Sauramps Medical 365–70

    Google Scholar 

  24. Gutierrez S, Greiwe RM, Frankle MA, Siegal S, Lee WE 3rd (2007) Biomechanical comparison of component position and hardware failure in the reverse shoulder prosthesis. J Shoulder Elbow Surg 16(3 Suppl):S9–S12

    PubMed  Google Scholar 

  25. Frankle MA, Teramoto A, Luo ZP, Levy JC, Pupello D (2009) Glenoid morphology in reverse shoulder arthroplasty: classification and surgical implications. J Shoulder Elbow Surg 18(6):874–885

    PubMed  Google Scholar 

  26. Katz D, Valenti P, Kany J, Elkholti K, Werthel J‑D (2016) Does lateralisation of the centre of rotation in reverse shoulder arthroplasty avoid scapular notching? Clinical and radiological review of one hundred and forty cases with forty five months of follow-up. Int Orthop 40(1):99–108

    PubMed  Google Scholar 

  27. Gutierrez S, Levy JC, Frankle MA, Cuff D, Keller TS, Pupello DR et al (2008) Evaluation of abduction range of motion and avoidance of inferior scapular impingement in a reverse shoulder model. J Shoulder Elbow Surg 17(4):608–615

    PubMed  Google Scholar 

  28. Collin P, Liu X, Denard PJ, Gain S, Nowak A, Ladermann A (2018) Standard versus bony increased-offset reverse shoulder arthroplasty: a retrospective comparative cohort study. J Shoulder Elbow Surg 27(1):59–64

    PubMed  Google Scholar 

  29. Franceschetti E, Ranieri R, Giovanetti de Sanctis E, Palumbo A, Franceschi F (2020) Clinical results of bony increased-offset reverse shoulder arthroplasty (BIO-RSA) associated with an onlay 145 degrees curved stem in patients with cuff tear arthropathy: a comparative study. J Shoulder Elbow Surg 29(1):58–67

    PubMed  Google Scholar 

  30. Werner BC, Lederman E, Gobezie R, Denard PJ (2021) Glenoid lateralization influences active internal rotation after reverse shoulder arthroplasty. J Shoulder Elbow Surg 30(11):2498–2505

    PubMed  Google Scholar 

  31. Jones RB, Wright TW, Roche CP (2015) Bone grafting the genoid versus use of augmented glenoid baseplates with reverse shoulder arthroplasty. Bull Hosp Jt Dis (2013) 73(Suppl 1):S129–S135

    Google Scholar 

  32. Formaini NT, Everding NG, Levy JC, Santoni BG, Nayak AN, Wilson C (2017) Glenoid baseplate fixation using hybrid configurations of locked and unlocked peripheral screws. J Orthop Traumatol 18(3):221–228

    PubMed  PubMed Central  Google Scholar 

  33. Abdic S, Lockhart J, Alnusif N, Johnson JA, Athwal GS (2021) Glenoid baseplate screw fixation in reverse shoulder arthroplasty: does locking screw position and orientation matter? J Shoulder Elbow Surg 30(5):1207–1213

    PubMed  Google Scholar 

  34. Chebli C, Huber P, Watling J, Bertelsen A, Bicknell RT, Matsen F 3rd (2008) Factors affecting fixation of the glenoid component of a reverse total shoulder prothesis. J Shoulder Elbow Surg 17(2):323–327

    PubMed  Google Scholar 

  35. Roche C, DiGeorgio C, Yegres J, VanDeven J, Stroud N, Flurin PH et al (2019) Impact of screw length and screw quantity on reverse total shoulder arthroplasty glenoid fixation for 2 different sizes of glenoid baseplates. JSES Open Access 3(4):296–303

    PubMed  PubMed Central  Google Scholar 

  36. Sabesan VJ, Lombardo DJ, Shahriar R, Petersen-Fitts GR, Wiater JM (2016) The effect of glenosphere size on functional outcome for reverse shoulder arthroplasty. Musculoskelet Surg 100(2):115–120

    CAS  PubMed  Google Scholar 

  37. Schoch BS, Vasilopoulos T, LaChaud G, Wright TW, Roche C, King JJ et al (2020) Optimal glenosphere size cannot be determined by patient height. J Shoulder Elbow Surg 29(2):258–265

    PubMed  Google Scholar 

  38. Werthel JD, Walch G, Vegehan E, Deransart P, Sanchez-Sotelo J, Valenti P (2019) Lateralization in reverse shoulder arthroplasty: a descriptive analysis of different implants in current practice. Int Orthop 43(10):2349–2360

    PubMed  Google Scholar 

  39. Berhouet J, Garaud P, Favard L (2014) Evaluation of the role of glenosphere design and humeral component retroversion in avoiding scapular notching during reverse shoulder arthroplasty. J Shoulder Elbow Surg 23(2):151–158

    PubMed  Google Scholar 

  40. Aibinder W, Schoch B, Parsons M, Watling J, Ko JK, Gobbato B, Throckmorton T, Routman H, Fan W, Simmons C, Roche C (2021) Risk factors for complications and revision surgery after anatomic and reverse total shoulder arthroplasty. J Shoulder Elbow Surg 30(11):e689–e701. https://doi.org/10.1016/j.jse.2021.04.029

    Article  PubMed  Google Scholar 

  41. Nyffeler RW, Werner CML, Simmen BR, Gerber C (2004) Analysis of a retrieved delta III total shoulder prosthesis. J Bone Joint Surg Br 86(8):1187–1191

    CAS  PubMed  Google Scholar 

  42. Rhee SM, Lee JD, Park YB, Yoo JC, Oh JH (2019) Prognostic radiological factors affecting clinical outcomes of reverse shoulder arthroplasty in the Korean population. Clin Orthop Surg 11(1):112–119

    PubMed  PubMed Central  Google Scholar 

  43. Marion B, Leclere FM, Casoli V, Paganini F, Unglaub F, Spies C et al (2014) Potential axillary nerve stretching during RSA implantation: an anatomical study. Anat Sci Int 89(4):232–237

    PubMed  Google Scholar 

  44. Patel M, Martin JR, Campbell DH, Fernandes RR, Amini MH (2021) Inferior tilt of the glenoid leads to medialization and increases impingement on the scapular neck in reverse shoulder arthroplasty. J Shoulder Elbow Surg 30(6):1273–1281

    PubMed  Google Scholar 

  45. Li X, Dines JS, Warren RF, Craig EV, Dines DM (2015) Inferior glenosphere placement reduces scapular notching in reverse total shoulder arthroplasty. Orthopedics 38(2):e88–e93

    PubMed  Google Scholar 

  46. Werner BS, Chaoui J, Walch G (2018) Glenosphere design affects range of movement and risk of friction-type scapular impingement in reverse shoulder arthroplasty. Bone Joint J 100-B(9):1182–1186

    CAS  PubMed  Google Scholar 

  47. Irlenbusch U, Kaab MJ, Kohut G, Proust J, Reuther F, Joudet T (2015) Reversed shoulder arthroplasty with inversed bearing materials: 2‑year clinical and radiographic results in 101 patients. Arch Orthop Trauma Surg 135(2):161–169

    PubMed  Google Scholar 

  48. Kohut G, Dallmann F, Irlenbusch U (2012) Wear-induced loss of mass in reversed total shoulder arthroplasty with conventional and inverted bearing materials. J Biomech 45(3):469–473

    PubMed  Google Scholar 

  49. Kohut G, Reuther F, Joudet T, Kääb MJ, Irlenbusch U (2021) Inverted bearing reverse total shoulder arthroplasty: Scapular notching does not affect clinical outcomes and complications at mid to long-term. J Shoulder Elbow Surg. https://doi.org/10.1016/j.jse.2021.09.010. Epub ahead of print

    Article  PubMed  Google Scholar 

  50. Jones CW, Barrett M, Erickson J, Chatindiara I, Poon P (2020) Larger polyethylene glenospheres in reverse shoulder arthroplasty: are they safe? JSES Int 4(4):944–951

    PubMed  PubMed Central  Google Scholar 

  51. Erickson BJ, Frank RM, Harris JD, Mall N, Romeo AA (2015) The influence of humeral head inclination in reverse total shoulder arthroplasty: a systematic review. J Shoulder Elbow Surg 24(6):988–993

    PubMed  Google Scholar 

  52. Friedman RJ, Barcel DA, Eichinger JK (2019) Scapular notching in reverse total shoulder arthroplasty. J Am Acad Orthop Surg 27(6):200–209

    PubMed  Google Scholar 

  53. Ladermann A, Denard PJ, Boileau P, Farron A, Deransart P, Terrier A et al (2015) Effect of humeral stem design on humeral position and range of motion in reverse shoulder arthroplasty. Int Orthop 39(11):2205–2213

    PubMed  Google Scholar 

  54. Oh JH, Shin SJ, McGarry MH, Scott JH, Heckmann N, Lee TQ (2014) Biomechanical effects of humeral neck-shaft angle and subscapularis integrity in reverse total shoulder arthroplasty. J Shoulder Elbow Surg 23(8):1091–1098

    PubMed  Google Scholar 

  55. Ferle M, Pastor MF, Hagenah J, Hurschler C, Smith T (2019) Effect of the humeral neck-shaft angle and glenosphere lateralization on stability of reverse shoulder arthroplasty: a cadaveric study. J Shoulder Elbow Surg 28(5):966–973

    PubMed  Google Scholar 

  56. Gutierrez S, Comiskey CA, Luo ZP, Pupello DR, Frankle MA (2008) Range of impingement-free abduction and adduction deficit after reverse shoulder arthroplasty. Hierarchy of surgical and implant-design-related factors. J Bone Joint Surg Am 90(12):2606–2615

    PubMed  Google Scholar 

  57. Roche C, Flurin PH, Wright T, Crosby LA, Mauldin M, Zuckerman JD (2009) An evaluation of the relationships between reverse shoulder design parameters and range of motion, impingement, and stability. J Shoulder Elbow Surg 18(5):734–741

    PubMed  Google Scholar 

  58. Clouthier AL, Hetzler MA, Fedorak G, Bryant JT, Deluzio KJ, Bicknell RT (2013) Factors affecting the stability of reverse shoulder arthroplasty: a biomechanical study. J Shoulder Elbow Surg 22(4):439–444

    PubMed  Google Scholar 

  59. Carpenter S, Pinkas D, Newton MD, Kurdziel MD, Baker KC, Wiater JM (2015) Wear rates of retentive versus nonretentive reverse total shoulder arthroplasty liners in an in vitro wear simulation. J Shoulder Elbow Surg 24(9):1372–1379

    PubMed  Google Scholar 

  60. Abdulla I, Langohr DG, Giles JW, Johnson JA, Athwal GS (2018) The effect of humeral polyethylene insert constraint on reverse shoulder arthroplasty biomechanics. Shoulder Elbow 10(1):25–31

    PubMed  Google Scholar 

  61. Elwell JA, Athwal GS, Willing R (2021) Characterizing the trade-off between range of motion and stability of reverse total shoulder arthroplasty. J Shoulder Elbow Surg. https://doi.org/10.1016/j.jse.2021.05.002. Epub ahead of print

    Article  PubMed  Google Scholar 

  62. Ascione F, Kilian CM, Laughlin MS, Bugelli G, Domos P, Neyton L et al (2018) Increased scapular spine fractures after reverse shoulder arthroplasty with a humeral onlay short stem: an analysis of 485 consecutive cases. J Shoulder Elbow Surg 27(12):2183–2190

    PubMed  Google Scholar 

  63. Bacle G, Nove-Josserand L, Garaud P, Walch G (2017) Long-term outcomes of reverse total shoulder arthroplasty: a follow-up of a previous study. J Bone Joint Surg Am 99(6):454–461

    PubMed  Google Scholar 

  64. Ernstbrunner L, Suter A, Catanzaro S, Rahm S, Gerber C (2017) Reverse total shoulder arthroplasty for massive, irreparable rotator cuff tears before the age of 60 years: long-term results. J Bone Joint Surg Am 99(20):1721–1729

    PubMed  Google Scholar 

  65. Ek ET, Neukom L, Catanzaro S, Gerber C (2013) Reverse total shoulder arthroplasty for massive irreparable rotator cuff tears in patients younger than 65 years old: results after five to fifteen years. J Shoulder Elbow Surg 22(9):1199–1208

    PubMed  Google Scholar 

  66. Boileau P (2016) Complications and revision of reverse total shoulder arthroplasty. Orthop Traumatol Surg Res 102(1 Suppl):S33–S43

    CAS  PubMed  Google Scholar 

  67. Gerber C, Canonica S, Catanzaro S, Ernstbrunner L (2018) Longitudinal observational study of reverse total shoulder arthroplasty for irreparable rotator cuff dysfunction: results after 15 years. J Shoulder Elbow Surg 27(5):831–838

    PubMed  Google Scholar 

  68. Ascione F, Domos P, Guarrella V, Chelli M, Boileau P, Walch G (2018) Long-term humeral complications after Grammont-style reverse shoulder arthroplasty. J Shoulder Elbow Surg 27(6):1065–1071

    PubMed  Google Scholar 

  69. Raiss P, Edwards TB, Deutsch A, Shah A, Bruckner T, Loew M et al (2014) Radiographic changes around humeral components in shoulder arthroplasty. J Bone Joint Surg Am 96(7):e54

    PubMed  Google Scholar 

  70. Mazaleyrat M, Favard L, Garaud P, Boileau P, Berhouet J (2021) Press-fit vs. cemented humeral stem fixation for reverse shoulder arthroplasty: functional outcomes at a mean follow-up of 9.5 years. J Shoulder Elbow Surg 30(1):72–79

    PubMed  Google Scholar 

  71. Melis B, DeFranco M, Ladermann A, Mole D, Favard L, Nerot C et al (2011) An evaluation of the radiological changes around the Grammont reverse geometry shoulder arthroplasty after eight to 12 years. J Bone Joint Surg Br 93(9):1240–1246

    CAS  PubMed  Google Scholar 

  72. Bogle A, Budge M, Richman A, Miller RJ, Wiater JM, Voloshin I (2013) Radiographic results of fully uncemented trabecular metal reverse shoulder system at 1 and 2 years’ follow-up. J Shoulder Elbow Surg 22(4):e20–e25

    PubMed  Google Scholar 

  73. Denard PJ, Noyes MP, Walker JB, Shishani Y, Gobezie R, Romeo AA et al (2018) Proximal stress shielding is decreased with a short stem compared with a traditional-length stem in total shoulder arthroplasty. J Shoulder Elbow Surg 27(1):53–58

    PubMed  Google Scholar 

  74. Schnetzke M, Coda S, Raiss P, Walch G, Loew M (2016) Radiologic bone adaptations on a cementless short-stem shoulder prosthesis. J Shoulder Elbow Surg 25(4):650–657

    PubMed  Google Scholar 

  75. Kleim BD, Garving C, Brunner UH (2020) Cementless curved short stem shoulder prostheses with a proximal porous coating: ingrowth properties at 2–5 years of radiological follow-up with clinical correlation. J Shoulder Elbow Surg 29(11):2299–2307

    PubMed  Google Scholar 

  76. Ladermann A, Chiu JC, Cunningham G, Herve A, Piotton S, Bothorel H et al (2020) Do short stems influence the cervico-diaphyseal angle and the medullary filling after reverse shoulder arthroplasties? Orthop Traumatol Surg Res 106(2):241–246

    PubMed  Google Scholar 

  77. Abdic S, Athwal GS, Wittmann T, Walch G, Raiss P (2021) Short stem humeral components in reverse shoulder arthroplasty: stem alignment influences the neck-shaft angle. Arch Orthop Trauma Surg 141(2):183–188

    PubMed  Google Scholar 

  78. Razfar N, Reeves JM, Langohr DG, Willing R, Athwal GS, Johnson JA (2016) Comparison of proximal humeral bone stresses between stemless, short stem, and standard stem length: a finite element analysis. J Shoulder Elbow Surg 25(7):1076–1083

    PubMed  Google Scholar 

  79. Moroder P, Ernstbrunner L, Zweiger C, Schatz M, Seitlinger G, Skursky R et al (2016) Short to mid-term results of stemless reverse shoulder arthroplasty in a selected patient population compared to a matched control group with stem. Int Orthop 40(10):2115–2120

    PubMed  Google Scholar 

  80. Teissier P, Teissier J, Kouyoumdjian P, Asencio G (2015) The TESS reverse shoulder arthroplasty without a stem in the treatment of cuff-deficient shoulder conditions: clinical and radiographic results. J Shoulder Elbow Surg 24(1):45–51

    PubMed  Google Scholar 

  81. Boileau P, Walch G (1997) The three-dimensional geometry of the proximal humerus. Implications for surgical technique and prosthetic design. J Bone Joint Surg Br 79(5):857–865

    CAS  PubMed  Google Scholar 

  82. Merolla G, Walch G, Ascione F, Paladini P, Fabbri E, Padolino A et al (2018) Grammont humeral design versus onlay curved-stem reverse shoulder arthroplasty: comparison of clinical and radiographic outcomes with minimum 2‑year follow-up. J Shoulder Elbow Surg 27(4):701–710

    PubMed  Google Scholar 

  83. Valenti P, Sauzieres P, Katz D, Kalouche I, Kilinc AS (2011) Do less medialized reverse shoulder prostheses increase motion and reduce notching? Clin Orthop Relat Res 469(9):2550–2557

    PubMed  PubMed Central  Google Scholar 

  84. Boileau P, Moineau G, Roussanne Y, O’Shea K (2011) Bony increased-offset reversed shoulder arthroplasty: minimizing scapular impingement while maximizing glenoid fixation. Clin Orthop Relat Res 469(9):2558–2567

    PubMed  PubMed Central  Google Scholar 

  85. Gutierrez S, Levy JC, Lee WE 3rd, Keller TS, Maitland ME (2007) Center of rotation affects abduction range of motion of reverse shoulder arthroplasty. Clin Orthop Relat Res 458:78–82

    PubMed  Google Scholar 

  86. Hamilton MA, Diep P, Roche C, Flurin PH, Wright TW, Zuckerman JD et al (2015) Effect of reverse shoulder design philosophy on muscle moment arms. J Orthop Res 33(4):605–613

    PubMed  Google Scholar 

  87. Giles JW, Langohr GD, Johnson JA, Athwal GS (2015) Implant design variations in reverse total shoulder arthroplasty influence the required deltoid force and resultant joint load. Clin Orthop Relat Res 473(11):3615–3626

    PubMed  PubMed Central  Google Scholar 

  88. Wong MT, Langohr GDG, Athwal GS, Johnson JA (2016) Implant positioning in reverse shoulder arthroplasty has an impact on acromial stresses. J Shoulder Elbow Surg 25(11):1889–1895

    PubMed  Google Scholar 

  89. Routman HD, Flurin PH, Wright TW, Zuckerman JD, Hamilton MA, Roche CP (2015) Reverse shoulder arthroplasty prosthesis design classification system. Bull Hosp Jt Dis (2013) 73(Suppl 1):S5–14

    Google Scholar 

  90. Langohr GD, Giles JW, Athwal GS, Johnson JA (2015) The effect of glenosphere diameter in reverse shoulder arthroplasty on muscle force, joint load, and range of motion. J Shoulder Elbow Surg 24(6):972–979

    PubMed  Google Scholar 

  91. Costantini O, Choi DS, Kontaxis A, Gulotta LV (2015) The effects of progressive lateralization of the joint center of rotation of reverse total shoulder implants. J Shoulder Elbow Surg 24(7):1120–1128

    PubMed  Google Scholar 

  92. Henninger HB, Barg A, Anderson AE, Bachus KN, Burks RT, Tashjian RZ (2012) Effect of lateral offset center of rotation in reverse total shoulder arthroplasty: a biomechanical study. J Shoulder Elbow Surg 21(9):1128–1135

    PubMed  Google Scholar 

  93. Vourazeris JD, Wright TW, Struk AM, King JJ, Farmer KW (2017) Primary reverse total shoulder arthroplasty outcomes in patients with subscapularis repair versus tenotomy. J Shoulder Elbow Surg 26(3):450–457

    PubMed  Google Scholar 

  94. Matsuki K, King JJ, Wright TW, Schoch BS (2018) Outcomes of reverse shoulder arthroplasty in small- and large-stature patients. J Shoulder Elbow Surg 27(5):808–815

    PubMed  Google Scholar 

  95. Boutsiadis A, Lenoir H, Denard PJ, Panisset JC, Brossard P, Delsol P et al (2018) The lateralization and distalization shoulder angles are important determinants of clinical outcomes in reverse shoulder arthroplasty. J Shoulder Elbow Surg 27(7):1226–1234

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-David Werthel M.D, M. S.

Ethics declarations

Conflict of interest

J.-D. Werthel and P. Valenti receive royalties for shoulder prosthesis design from FH Orthopedics.

Each author certifies that his or her institution approved the human protocol for this investigation and that all investigations were conducted in conformity with ethical principles of research.

Additional information

figure qr

Scan QR code & read article online

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Werthel, JD., Valenti, P. What is the best design for reverse total shoulder arthroplasty in 2022?. Obere Extremität 16, 255–264 (2021). https://doi.org/10.1007/s11678-021-00671-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11678-021-00671-8

Keywords

Schlüsselwörter

Navigation