Skip to main content

Response of photosynthesis, growth, and acorn mass of pedunculate oak to different levels of nitrogen in wet and dry growing seasons

Abstract

The objective was to examine the effects of optimal leaf nitrogen levels > 2.0% and suboptimal levels ˂ 2.0%, nitrogen nutrition on net photosynthetic rate, stem diameter increment, height growth increment and acorn mass of pedunculate oak during 2010 in the absence of drought stress and during 2011 under the impact of moderate drought stress. According to the results, moderate drought stress significantly reduced net photosynthetic rate, stem diameter increment and height growth increment, while acorn mass was not affected. Suboptimal nitrogen nutrition significantly reduced the net photosynthetic rate and stem diameter increment only in the wet year, acorn mass in both wet and dry years, while height growth increment was not significantly reduced by suboptimal nitrogen nutrition in either year. The results indicate that optimal nitrogen levels can stimulate photosynthetic rate and stem diameter increment of pedunculate oak only in the absence of moderate drought stress. Moreover, the results show that moderate drought stress is a more dominant stressor for photosynthesis and growth of pedunculate oak than suboptimal nitrogen nutrition, while for acorn development, it is the more dominant stressor.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Allen DC, Breshears DD, McDowell NG (2015) On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6:129

    Article  Google Scholar 

  • Araus V, Swift J, Alvarez JM, Henry A, Coruzzi GM (2020) A balancing act: how plants integrate nitrogen and water signals. J Exp Bot 71:4442–4451

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Arend M, Kuster T, Gnthardt-Goerg M, Dobbertin M (2011) Provenance-specific growth responses to drought and air warming in three European oak species (Quercus robur, Q. petraea and Q. pubescens). Tree Physiol 31:287–297

    PubMed  Article  Google Scholar 

  • Arend M, Brem A, Kuster TM, Günthardt-Goerg MS (2013) Seasonal photosynthetic responses of European oaks to drought and elevated daytime temperature. Plant Biol 15:169–176

    CAS  PubMed  Article  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    CAS  Article  Google Scholar 

  • Baliuckas V, Pliura A (2008) Phenogenetic variation pattern in adaptive traits of Betula pendula, Alnus glutinosa and Quercus robur in Lithuania. Biologija 54:60–65

    Article  Google Scholar 

  • Bargali K, Bargali SS (1999) Comparative growth response of two contrasting species of central Himalaya in relation to light and nutrient availability. J Environ Biol 20:183–187

    Google Scholar 

  • Bargali K, Bargali SS (2016) Germination capacity of seeds of leguminous plants under water deficit conditions: implication for restoration of degraded lands in Kumaun Himalaya. Trop Ecol 57:445–453

    Google Scholar 

  • Bargali K, Singh SP (2007) Germination behaviour of some leguminous and actinorhizal plants of Himalaya: effect of temperature and medium. Trop Ecol 48:99–105

    Google Scholar 

  • Bargali K, Beena J, Bargali SS, Singh SP (2014) Diversity within Oaks. Int Oaks 25:57–70

    Google Scholar 

  • Bargali K, Beena J, Bargali SS, Singh SP (2015) Oaks and the biodiversity they sustain. Int Oaks 26:65–76

    Google Scholar 

  • Bergmann W (1993) Ernährungsstörungen bei Kulturpflanzen. Entstehung, visuelle und analytische diagnose. Gustav Fischer Verlag Jena. p 835

  • Bloom AJ, Frensch J, Taylor AR (2006) Influence of inorganic nitrogen and pH on the elongation of maize seminal roots. Ann Bot 97:867–873

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Bogdan S, Ivanković M (2009) Testing genetic variability of pedunculate oak (Quercus robur L.) from seed stands in Croatia–initial results. In: Matić S, Anić I (eds) Proceedings of the symposium on forests of pedunculate oak in changed site and management conditions. Croatian Academy of Sciences and Arts, and International Union of Forest Research Organizations, Zagreb. pp 169–181

  • Bogdziewicz M, Crone EE, Steele MA, Zwolak R (2017) Effects of nitrogen deposition on reproduction in a masting tree: benefits of higher seed production are trumped by negative biotic interactions. J Ecol 105:310–320

    CAS  Article  Google Scholar 

  • Bonito A, Varone L, Gratani L (2011) Relationship between acorn size and seedling morphological and physiological traits of Quercus ilex L. from different climates. Photosynthetica 49:75–86

    Article  Google Scholar 

  • Callahan HS, Del Fierro K, Patterson AE, Zafar H (2008) Impacts of elevated nitrogen inputs on oak reproductive and seed ecology. Glob Chang Biol 14:285–293

    Article  Google Scholar 

  • Cantón FR, Suárez MF, Cánovas FM (2005) Molecular aspects of nitrogen mobilization and recycling in trees. Photosynth Res 83:265–278

    PubMed  Article  CAS  Google Scholar 

  • Crnković S (2004) Quantitative and qualitative properties of common oak acorn (Quercus robur L.) in the stands of the basin of the Česma River. Šumarski List 128:413–430

    Google Scholar 

  • Degen B, Streiff R, Ziegenhagen B (1999) Comparative study of genetic variation and differentiation of two pedunculate oak (Quercus robur) stands using microsatellite and allozyme loci. Heredity 83:597–603

    PubMed  Article  Google Scholar 

  • Desrochers A, Thomas B (2007) The interaction between nitrogen source, soil pH, and drought in the growth and physiology of three poplar clones. Can J Bot 85(11):1046–1057

    CAS  Article  Google Scholar 

  • Dickson RE, Tomlinson PT (1996) Oak growth, development and carbon metabolism in response to water stress. Ann for Sci 53:181–196

    Article  Google Scholar 

  • Ding J, Böhlenius H, Rühl MG, Chen P, Sane S, Zambrano JA, Zheng B, Eriksson ME, Nilsson O (2018) GIGANTEA-like genes control seasonal growth cessation in Populus. New Phytol 218:1491–1503

    CAS  PubMed  Article  Google Scholar 

  • Drvodelić D, Oršanić M (2019) Selecting high quality forest seedlings of narrow-leaved ash (Fraxinus angustifolia Vahl) for regeneration and reforestation purposes. Šumarski List 143:577–585

    Article  Google Scholar 

  • Ducousso A, Bordacs S (2004) EUFORGEN technical guidelines for genetic conservation and use for pedunculate and sessile oaks (Quercus robur and Q. petraea). International Plant Genetic Resources Institute, Rome, Italy. p 6

  • Dure L (1993) Structural motifs in LEA proteins. In: Close TJ, Bray EA (eds) Plant responses to cellular dehydration during environmental stress. American Society of Plant Physiologists, Rockville, pp 91–103

    Google Scholar 

  • Epron D, Dreyer E (1990) Stomatand non-stomatal limitation of photosynthesis by leaf water deficits in three oak species: a comparison of gas exchange and chlorophyll a fluorescence data. Ann for Sci 47:435–450

    Article  Google Scholar 

  • Epron D, Dreyer E (1993) Long-term effects of drought on photosynthesis of adult oak trees (Quercus petraea (Matt.) Liebl. and Quercus robur L.) in a natural stand. New Phytol 125:381–389

    PubMed  Article  Google Scholar 

  • Fonti P, Heller O, Cherubini P, Rigling A, Arend M (2013) Wood anatomical responses of oak saplings exposed to air warming and soil drought. Plant Biol 15:210–219

    PubMed  Article  Google Scholar 

  • Gea-Izquierdo G, Cañellas I, Montero G (2006) Acorn production in Spanish holm oak woodlands. Sist Recur for 15:339–354

    Google Scholar 

  • Gessler A, Keitel C, Nahm M, Rennenberg H (2004) Water shortage affects the water and nitrogen balance in central European beech forests. Plant Biol 6:289–298

    CAS  PubMed  Article  Google Scholar 

  • Gessler A, Schaub M, McDowell NG (2017) The role of nutrients in drought-induced tree mortality and recovery. New Phytol 214:513–520

    CAS  PubMed  Article  Google Scholar 

  • Gómez JM (2004) Bigger is not always better: conflicting selective pressures on seed size in Quercus ilex. Evol Int J Org Evol 58:71–80

    Article  Google Scholar 

  • Grassi G, Magnani F (2005) Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant Cell Environ 28:834–849

    CAS  Article  Google Scholar 

  • Grassi G, Vicinelli E, Ponti F, Cantoni L, Magnani F (2005) Seasonal and interannual variability of photosynthetic capacity in relation leaf nitrogen in a deciduous forest plantation in northern Italy. Tree Physiol 25:349–360

    PubMed  Article  Google Scholar 

  • Guehl JM, Fort C, Ferhi A (1995) Differential response of leaf conductance, carbon isotope discrimination and wateruse ef-ficiency to nitrogen deficiency in maritime pine and pedunculate oak plants. New Phytol 131:149–157

    Article  Google Scholar 

  • Haase DL (2007) Morphological and physiological evaluations of seedling quality. USDA For Serv Proc RMRS 50:2–8

    Google Scholar 

  • Haase DL, Rose RW, Trobaugh J (2006) Field performance of-three stock sizes of Douglas-fir container seedlings grown-with slow release fertilizer-in the nursery growing medium. New For 3:1–24

    Article  Google Scholar 

  • He M, Dijkstra FA (2014) Drought effect on plant nitrogen and phosphorus: a meta-analysis. New Phytol 204:924–931

    CAS  PubMed  Article  Google Scholar 

  • Hechler WD, Dawson JO, DeLucia EH (1991) Stomatal conductance of seedlings of three oak species subjected to nitrogen fertilization and drought treatments. In: McCormick LH, Gottschalk KW (eds) Proceedings, 8th central hardwood forest conference; 1991 March 4–6; University Park, PA. Gen. Tech. Rep. NE-148. Radnor, PA: US. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station. pp 188–193

  • Hegarty TW (1977) Seed activation and seed germination under moisture stress. New Phytol 78:349–359

    Article  Google Scholar 

  • Hoch G (2005) Fruit-bearing branchlets are carbon autonomous in mature broad-leaved temperate forest trees. Plant Cell Environ 28:651–659

    CAS  Article  Google Scholar 

  • HRN ISO 11261:2004: Soil quality—determination of physiologically active P2O5 and K2O by AL method, AL method by Egner, Riehm, Domingo

  • HRN ISO 10390:2005: Soil quality—determination of pH

  • Jensen JS (2000) Provenance variation in phenotypic traits in Quercus robur and Quercus petraea in danish provenance trials. Scand J For Res 15:297–308

    Article  Google Scholar 

  • Jensen JS, Hansen JK (2008) Geographical variation in phenology of Quercus petraea (Matt.) Liebl and Quercus robur L. oak grown in greenhouse. Scand J For Res 23:179–188

    Article  Google Scholar 

  • Jensen JS, Hansen JK (2010) Genetic variation in responses to different soil water treatments in Quercus robur L. Scand J For Res 25:400–411

    Article  Google Scholar 

  • Joseph J, Luster J, Bottero A, Buser N, Baechli L, Sever K, Gessler A (2021) Effects of drought on nitrogen uptake and carbon dynamics in trees. Tree Physiol 41:927–943

    CAS  PubMed  Article  Google Scholar 

  • Kijowska-Oberc J, Staszak AM, Wawrzyniak MK, Ratajczak E (2020) Changes in proline levels during seed development of orthodox and recalcitrant seeds of genus Acer in a climate change scenario. Forests 11:1362

    Article  Google Scholar 

  • Koenig WD, Carmen WJ, Stanback MT, Mumme RL (1991) Determinants of acorn productivity among five species of oaks in central coastal California. In: Standiford RB, tech. coord. 1991. Proceedings of the symposium on oak wood-lands and hardwood rangeland management; Oct 31–Nov 2, 1990; Davis, California. Gen. Tech. Rep. PSW-GTR-126. Berkeley, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture; pp 136–142

  • Koster KL (1991) Glass formation and desiccation tolerance in seeds. Plant Physiol 96:302–304

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Kramer PJ, Kozlowski TT (1980) Physiology of Trees. Mc Graw-Hill, New York, p 642

    Google Scholar 

  • Kremer A, Petit RJ (1993) Gene diversity in natural populations of oak species. Ann for Sci 5:186–202

    Article  Google Scholar 

  • Kreuzwieser J, Gessler A (2010) Global climate change and tree nutrition: influence of water availability. Tree Physiol 30:1221–1234

    CAS  PubMed  Article  Google Scholar 

  • Lexer C, Heinze B, Gerber S, Macalka-Kampfer S, Steinkellner H, Kremer A, Glössl J (2000) Microsatellite analysis of maternal half-sib families of Quercus robur, pedunculate oak: II. inferring the number of pollen donors from the off-spring. Theor App Genet 100:858–865

    Article  Google Scholar 

  • Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolströma M, Lexer JM, Marchetti M (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manage 259:698–709

    Article  Google Scholar 

  • Lu M, Chen M, Song J, Wang Y, Pan Y, Wang C, Pang J, Fan J, Zhang Y (2019) Anatomy and transcriptome analysis in leaves revealed how nitrogen (N) availability influence drought acclimation of Populus. Trees 33:1003–1014

    CAS  Article  Google Scholar 

  • McDowell N, Levanič T (2014) Causes, consequences, and the future of forest mortality due to climate change. Acta Silvae Et Ligni 103:61–66

    Article  Google Scholar 

  • McDowell NG, Beerling DJ, Breshears DD, Fisher RA, Raffa KF, Stitt M (2011) The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends Ecol Evol 26:523–532

    PubMed  Article  Google Scholar 

  • Millard P, Grelet GA (2010) Nitrogen storage and remobilisation by trees: ecophysioloical relevance in a changing world. Tree Physiol 30:1083–1095

    CAS  PubMed  Article  Google Scholar 

  • Nussbaumer A, Waldner P, Apuhtin V, Aytar F, Benham S, Bussotti F, Eichhorn J, Eickenscheidt N, Fabianek P, Falkenried L, Leca S, Lindgren M, Serrano MJM, Neagu S, Nevalainen S, Pajtik J, Potočić N, Rautio P, Sioen G, StakėnasV TC, Thomsen IM, Timmermann V, Ukonmaanaho L, Verstraeten A, Wulff S, Gessler A (2018) Impact of weather cues and resource dynamics on mast occurrence in the main forest tree species in Europe. For Ecol Manage 429:336–350

    Article  Google Scholar 

  • Ogaya R, Peñuelas J (2007) Species-specific drought effects on flower and fruit production in a Mediterranean holm oak forest. Forestry 80:351–357

    Article  Google Scholar 

  • Parry ML (2007) Climate change: impacts, adaptation and vulnerability. Working group II contribution to the fourth as-sessment report of the ipcc intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK

  • Pratap V, Sharma YK (2010) Impact of osmotic stress on seed germination and seedling growth in black gram (Phaseolus mungo). J Environ Biol 31:721–726

    CAS  PubMed  Google Scholar 

  • Razaq M, Zhang P, Shen H (2017) Salahuddin influence of nitrogen and phosphorous on the growth and root morphology of Acer mono. PLoS ONE 12:1–13

    Article  CAS  Google Scholar 

  • Roth V, Dubravac T, Pilaš I, Dekanić S, Brekalo Z (2009) Acorn size of pedunculate oak (Quercus robur L.) and sessile oak (Quercus petraea Liebl.) as a factor in growth and development of seedlings. Šumarski List 5–6:257–266

    Google Scholar 

  • Saccone P, Delzon S, Pageés JP, Brun JJ, Michalet R (2009) The role of biotic interactions in altering tree seedling re-sponses to an extreme climatic event. J Veg Sci 20:403–414

    Article  Google Scholar 

  • Schmal JL, Jacobs DF, O’Reilly C (2011) Nitrogen budgeting and quality of exponentially fertilized Quercus robur seed-lings in Ireland. Eur J for Res 130:557–567

    CAS  Article  Google Scholar 

  • Schönbeck L, Gessler A, Schaub M, Rigling A, Hoch G, Kahmen A, Li MH (2020) Soil nutrients and lowered source: sink ratio mitigate effects of mild but not of extreme drought in trees. Environ Exp Bot 169:103905

    Article  CAS  Google Scholar 

  • Schönbeck L, Li MH, Lehmann MM, Rigling A, Schaub M, Hoch G, Kahmen A, Gessler A (2021) Soil nutrient availability alters tree carbon allocation dynamics during drought. Tree Physiol 41:697–707

    PubMed  Article  CAS  Google Scholar 

  • Schuldt B, Buras A, Arend M, Vitasse Y, Beierkuhnlein C, Damm A, Gharun M, Grams TEE, Hauck M, Hajek P, Hartmann H, Hiltbrunner E, Hoch G, Holloway-Phillips M, Körner C, Larysch E, Lübbe T, Nelson DB, Rammig A, Rigling A, Rose L, Ruehr NK, Schumann K, Weiser F, Werner C, Wohlgemuth T, Zang CS, Kahmen A (2020) A first assessment of the impact of the extreme 2018 summer drought on central European forests. Basic Appl Ecol 45:86–103

    Article  Google Scholar 

  • Seidl R, Thom D, Kautz M, Martin-Benito D, Peltoniemi M, Vacchiano G, Wild J, Ascoli D, Petr M, Honkaniemi J, Lexer MJ, Trotsiuk V, Mairota P, Svoboda M, Fabrika M, Nagel TA, Reyer CPO (2017) Forest disturbances under climate change. Nat Clim Change 7:395–402

    Article  Google Scholar 

  • Senf C, Buras A, Zang CS, Ramming A, Seidl R (2020) Excess forest mortality is consistently linked to drought across Europe. Nat Commun 11:6200

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Sever K, Bogdan S, Škvorc Š, Ostrogović Sever MZ, Franjić J (2016) Estimation of leaf nitrogen concentrations in Quercus robur L. using the CCM-200 portable chlorophyll meter for different patterns of vegetative growth and acorn production. New For 47:513–527

    Article  Google Scholar 

  • Shahi C, Vibhuti BK, Bargali SS (2015) How seed size and water stress affect the seed germination and seedling growth in wheat varieties? Curr Agric Res J 3:60–68

    Article  Google Scholar 

  • Shi W, Villar-Salvador P, Li G, Jiang X (2019) Acorn size is more important than nursery fertilization for outplanting performance of Quercus variabilis container seedlings. Ann for Sci 76:22

    Article  Google Scholar 

  • Simon J, Dannenmann M, Pena R, Gessler A, Rennenberg H (2017) Nitrogen nutrition of beech forests in a changing climate: importance of plant-soil-microbe water, carbon, and nitrogen interactions. Plant Soil 418:89–114

    CAS  Article  Google Scholar 

  • Škorić A (1986) Pedological practicum. University of Zagreb, Zagreb, p 51

    Google Scholar 

  • Taiz L, Zeiger E (2010) Plant physiology, 4th edn. Sinauer Associates, Inc., Sunderland, Massachusetts, pp 53–71

    Google Scholar 

  • Thomas FM, Gausling T (2000) Morphological and physiological responses of oak seedlings (Quercus petraea and Q. robur) to moderate drought. Ann For Sci 57:325–333

    Article  Google Scholar 

  • Tilki F, Yuksek FT, Guner S (2009) The effect of undercutting on growth and morphology of 1+0 bareroot sessile oak seedlings in relation to acorn size. Aust J Bas Appl Sci 3:3900–3905

    Google Scholar 

  • Turnbull MH, Whitehead D, Tissue DT, Schuster WSF, Brown KJ, Engel VC, Griffin KL (2002) Photosynthetic char-acteristics in canopies of Quercus rubra, Quercus prinus and Acer rubrum differ in response to soil water availability. Oecologia 130:515–524

    PubMed  Article  Google Scholar 

  • Ueda MU, Mizumachi E, Tokuchi N (2009) Allocation of nitrogen within the crown during leaf expansion in Quercus serrata saplings. Tree Physiol 29:913–919

    CAS  PubMed  Article  Google Scholar 

  • Ueda MU, Mizumachi E, Tokuchi N (2011) Foliage nitrogen turnover: differences among nitrogen absorbed at different times by Quercus serrata saplings. Ann Bot 108:169–175

    PubMed  PubMed Central  Article  Google Scholar 

  • Villar-Salvador P, Puértolas J, Peñuelas JL, Planelles R (2005) Effect of nitrogen fertilization in the nursery on the drought and frost resistance of Mediterranean forest species. Sist Recur For 14:408–418

    Google Scholar 

  • Villar-Salvador P, Heredia N, Millard P (2010) Remobilization of acorn nitrogen for early seedling growth in the Mediter-ranean oak Quercus ilex L. grown with contrasting nutrient availability. Tree Physiol 30:257–263

    CAS  PubMed  Article  Google Scholar 

  • Villar-Salvador P, Peñuelas JL, Nicolás-Peragón JL, Benito LF, Domínguez-Lerena S (2013) Is nitrogen fertilization in the nursery a suitable tool for enhancing the performance of Mediterranean oak plantations? New For 44:733–751

    Article  Google Scholar 

  • Walters MB, Reich PB (2000) Seed size, nitrogen supply, and growth rate affect tree seedling survival in deep shade. Ecology 81:1887–1901

    Article  Google Scholar 

  • Wang J, Villar-Salvador P, Li G, Liu Y (2018) Moderate water stress does not inhibit nitrogen remobilization, allowing fast growth in high nitrogen content Quercus variabilis seedlings under dry conditions. Tree Physiol 39:650–660

    Article  CAS  Google Scholar 

  • Wilson KB, Baldocchi DD, Hanson PJ (2000) Spatial and seasonal variability of photosynthetic parameters and their relationship to leaf nitrogen in a deciduous forest. Tree Physiol 20:565–578

    PubMed  Article  Google Scholar 

  • Yasumura Y, Hikosaka K, Matsui K, Hirose T (2002) Leaf-level nitrogenuse efficiency of canopy and understorey species in a beech forest. Funct Ecol 16:826–834

    Article  Google Scholar 

  • Zaninović K, Gajić-Čapka M, Perčec-Tadić M (2008) Klimatski atlas Hrvatske/climate atlas of Croatia 1961–1990, 1971–2000. Državni hidrometeorološki zavod, Zagreb. pp 1–200

  • Zhu K, Wang A, Wu J, Yuan F, Guan D, Jin C, Zhang Y, Gong C (2020) Effects of nitrogen additions on mesophyll and stomatal conductance in Manchurian ash and Mongolian oak. Sci Rep 10:10038

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Zobel DB, Ram J, Bargali SS (1995) Structural and physiological changes in Quercus leucotrchophora and Pinus roxburghii associated with stand disturbance in the Kumaun Himalaya, India. Int J Ecol Environ Sci 21:45–66

    Google Scholar 

Download references

Funding

This study was conducted as part of the research project “Reproductive physiology of pedunculate oak (Quercus robur L.) in Spačva” fully supported and funded by “Croatian Forests Ltd”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Željko Škvorc.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The online version is available at http://www.springerlink.com.

Guest editor: Yanbo Hu

Corresponding editor: Yanbo Hu

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (TIFF 56 kb)

Supplementary file 2 (DOCX 14 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sever, K., Bogdan, S. & Škvorc, Ž. Response of photosynthesis, growth, and acorn mass of pedunculate oak to different levels of nitrogen in wet and dry growing seasons. J. For. Res. (2022). https://doi.org/10.1007/s11676-022-01505-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11676-022-01505-1

Keywords

  • Quercus robur L.
  • Drought stress
  • Net photosynthic rate
  • Stem diameter increment
  • Height growth increment
  • Acorn mass