Skip to main content
Log in

Soil organic carbon storage in forest restoration models and environmental conditions

  • Review Article
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

The scale of forest and landscape restoration is expected to increase during the UN Decade on Ecosystem Restoration and its contribution to the provision of critical ecosystem services to society. Several models of forest restoration may improve ecosystem services, including soil organic carbon (SOC) storage. A review was carried out to access: (1) the variability of SOC storage between worldwide forest restoration models and, (2) the effects of climate, soil class, soil texture, and vegetation type on SOC storage. We reviewed 119 primary studies with information on SOC and soil texture for different forest restoration models. The restoration models were grouped into four categories: natural regeneration, monocultures, agroforestry, and mixed forest. SOC data was extracted from these four restoration models, other land uses (cropland, bare land, grassland, and natural forest), climate regimes, and soil properties. The SOC storage in the forest restoration models and other land uses at a global scale ranged between 0.1 to 514 Mg ha−1. The overall mean value for SOC storage was higher for natural regeneration (112 Mg ha−1), followed by agroforestry (74 Mg ha−1), mixed forest (73 Mg ha−1), and monocultures (68 Mg ha−1). However, the average SOC storage was similar among the four restoration models in the moist warm climate zone. The SOC storage mean value in the moist cool zone was 23% higher than the dry cool zone (81 and 62 Mg ha−1, respectively), and 50% higher for the moist warm zone when compared to the dry warm climatic zone (74 and 38 Mg ha−1, respectively). The SOC storage of the restoration models was positively related to soil depth (0.59; p < 0.01), clay content (0.29; p < 0.01), and stand age (0.17; p < 0.01). Globally, the mean values of SOC storage were 26, 66, and 139 Mg ha−1 at zero − 10, zero − 30, and zero − 100 cm depths, respectively. In addition, sandy soils showed smaller mean values of SOC storage than medium to clay soils, especially in deeper soil layers. Furthermore, SOC storage was positively related between restoration models and other land uses (0.93; p < 0.01), suggesting a prominent effect of climate and soil properties on SOC. Forest restoration models showed larger SOC storage when compared to croplands and bare land, but in general it was smaller or similar when compared to pasture and natural forest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Abdalla M, Hastings A, Chadwick DR, Jones DL, Evans CD, Jones MB, Rees RM, Smith P (2018) Critical review of the impacts of grazing intensity on soil organic carbon storage and other soil quality indicators in extensively managed grasslands. Agric Ecosyst Environ 253:62–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams AB, Harrison RB, Sletten RS, Strahm BD, Turnblom EC, Jensen CM (2005) Nitrogen-fertilization impacts on carbon sequestration and flux in managed coastal Douglas-fir stands of the Pacific Northwest. For Ecol Manag 220:313–325

    Article  Google Scholar 

  • Armas C, Ordiales R, Pugnaire FI (2004) Measuring plant interactions: a new comparative index. Ecology 85:2682–2686

    Article  Google Scholar 

  • Barlow J, Gardner TA, Ferreira LV, Peres CA (2007) Litter fall and decomposition in primary, secondary and plantation forests in the Brazilian Amazon. For Ecol Manag 247:91–97

    Article  Google Scholar 

  • Barreto AC, dos Freire MBGS, Nacif PGS, Araújo QR, Freire FJ, Inácio ESB (2008) Fracionamento químico e físico do carbono orgânico total em um solo de mata submetido a diferentes usos. Rev Bras Ciência Do Solo 32:1471–1478

    Article  CAS  Google Scholar 

  • Bispo A, Andersen L, Angers DA, Bernoux M, Brossard M, Cécillon L, Comans RNJ, Harmsen J, Jonassen K, Lamé F, Lhuillery C, Maly S, Martin E, Mcelnea AE, Sakai H, Watane Y, Eglin TK (2017) Accounting for carbon stocks in soils and measuring GHGs emission fluxes from soils: do we have the necessary standards? Front Environ Sci 5:1–12

    Article  Google Scholar 

  • Cassol PC, Fachini L, Mafra ÁL, Brand MA, Simonete MA, Coimbra JLM (2019) Alterações no carbono orgânico do solo de campo natural submetido ao plantio de Pinus taeda em três idades. Ciência Florest 29:545

    Article  Google Scholar 

  • Chatterjee N, Nair PKR, Chakraborty S, Nair VD (2018) Changes in soil carbon stocks across the Forest-Agroforest-Agriculture/Pasture continuum in various agroecological regions: a meta-analysis. Agric Ecosyst Environ 266:55–67

    Article  Google Scholar 

  • Chen X, Chen HYH, Chen C, Ma Z, Searle EB, Yu Z, Huang Z (2019) Effects of plant diversity on soil carbon in diverse ecosystems: a global meta-analysis. Biol Rev 2:brv.12554

    Google Scholar 

  • Chenu C, Angers DA, Barré P, Derrien D, Arrouays D, Balesdent J (2019) Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations. Soil Tillage Res 188:41–52

    Article  Google Scholar 

  • Conforti M, Lucà F, Scarciglia F, Matteuci G, Buttafuocco G (2016) Soil carbon stock in relation to soil properties and landscape position in a forest ecosystem of southern Italy (Calabria region). CATENA 144:23–33

    Article  CAS  Google Scholar 

  • Corazza EJ, Silva JE, Resck DVS, Gomes AC (1999) Comportamento de diferentes sistemas de manejo como fonte ou depósito de carbono em relação à vegetação de Cerrado. Rev Bras Ciência Do Solo 23:425–432

    Article  CAS  Google Scholar 

  • da Silva LG, de Mendes IC, Reis Júnior FB, Fernandes MF, de Melo JT, Kato E (2009) Atributos físicos, químicos e biológicos de um Latossolo de cerrado em plantio de espécies florestais. Pesqui Agropecu Bras 44:613–620

    Article  Google Scholar 

  • de Balieiro FC, Pereira MG, Alves BJR, Resende AS, Franco AA (2008) Soil carbon and nitrogen in pasture soil reforested with eucalyptus and guachapele. Rev Bras Ciência Do Solo 32:1253–1260

    Article  CAS  Google Scholar 

  • de Carvalho WR, Vasconcelos SS, Kato OR, Capela CJB, Castellani DC (2014) Short-term changes in the soil carbon stocks of young oil palm-based agroforestry systems in the eastern Amazon. Agrofor Syst 88:357–368

    Article  Google Scholar 

  • de Medeiros AS, da Silva TS, da Silva AVL, Barros DRS, Maia SMF (2018) Organic carbon, nitrogen and the stability of soil aggregates in areas converted from sugar cane to eucalyptus in the state of alagoas. Rev Arvore. https://doi.org/10.1590/1806-90882018000400004

    Article  Google Scholar 

  • De Deyn GB, Cornelissen JHC, Bardgett RD (2008) Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol Lett 11:516–531

    Article  PubMed  Google Scholar 

  • Deng L, Wang K, Tang Z, Shangguan Z (2016) Soil organic carbon dynamics following natural vegetation restoration: evidence from stable carbon isotopes (δ13C). Agric Ecosyst Environ 221:235–244

    Article  CAS  Google Scholar 

  • Duchaufour P (1977) Pédologie: Pédogenèse et classification. Masson, Paris, p 477

    Google Scholar 

  • Erskine PD, Lamb D, Bristow M (2006) Tree species diversity and ecosystem function: can tropical multi-species plantations generate greater productivity? For Ecol Manag 233:205–210

    Article  Google Scholar 

  • Gama-Rodrigues EF, Nair PKR, Nair VD, Gama-Rodrigues AC, Baligar VC, Machado RCR (2010) Carbon storage in soil size fractions under two cacao agroforestry systems in Bahia, Brazil. Environ Manag 45:274–283

    Article  Google Scholar 

  • Garcia-Franco N, Wiesmeier M, Goberna M, Martínez-Mena M, Albaladejo J (2014) Carbon dynamics after afforestation of semiarid shrublands: implications of site preparation techniques. For Ecol Manag 319:107–115

    Article  Google Scholar 

  • Gleixner G (2013) Soil organic matter dynamics: a biological perspective derived from the use of compound-specific isotopes studies. Ecol Res 28:683–695

    Article  CAS  Google Scholar 

  • Gough CM (2011) Terrestrial primary production: fuel for life. Nat Educ Knowl 3(10):28

    Google Scholar 

  • Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Glob Chang Biol 8:345–360

    Article  Google Scholar 

  • Guo Y, Abdalla M, Espenberg M, Hastings A, Hallet P, Smith P (2021) A systematic analysis and review of the impacts of afforestation on soil quality indicators as modified by climate zone, forest type and age. Sci Total Environ 757:143824

    Article  CAS  PubMed  Google Scholar 

  • Gupta N, Kukal SS, Bawa SS, Dhaliwal GS (2009) Soil organic carbon and aggregation under poplar based agroforestry system in relation to tree age and soil type. Agrofor Syst 76:27–35

    Article  Google Scholar 

  • Hulvey KB, Hobbs RJ, Standish RJ, Lindenmayer DB, Lach L, Perring MP (2013) Benefits of tree mixes in carbon plantings. Nat Clim Change 3:869–874

    Article  CAS  Google Scholar 

  • Isaac ME, Gordon AM, Thevathasan N, Oppong SK, Quashie-Sam J (2005) Temporal changes in soil carbon and nitrogen in west African multistrata agroforestry systems: a chronosequence of pools and fluxes. Agrofor Syst 65:23–31

    Article  Google Scholar 

  • Kasel S, Bennett LT (2007) Land-use history, forest conversion, and soil organic carbon in pine plantations and native forests of south eastern Australia. Geoderma 137:401–413

    Article  CAS  Google Scholar 

  • Kleber M (2010) What is recalcitrant soil organic matter? Environ Chem 7(4):320–332

    Article  CAS  Google Scholar 

  • Kogel-Knabner I, Amelung W (2021) Soil organic matter in major pedogenic soil groups. Geoderma 384:114785

    Article  CAS  Google Scholar 

  • Kravchenko AN, Negassa WC, Guber AK, Rivers ML (2015) Protection of soil carbon within macro-aggregates depends on intra-aggregate pore characteristics. Sci Rep 5:16261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laganière J, Angers DA, Paré D (2010) Carbon accumulation in agricultural soils after afforestation: a meta-analysis. Glob Change Biol 16:439–453

    Article  Google Scholar 

  • Lal R (2018) Digging deeper: a holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Glob Change Biol 24:3285–3301

    Article  Google Scholar 

  • Lehmann J, Abiven S, Kleber M, Pan G, Singh BP, Sohi SP, Zimmerman AR (2015) Persistence of biochar in soil. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science, technology and implementation, 2nd edn. Routledge, Abingdon, pp 235–282

    Chapter  Google Scholar 

  • Lemma B, Kleja DB, Nilsson I, Olsson M (2006) Soil carbon sequestration under different exotic tree species in the southwestern highlands of Ethiopia. Geoderma 136:886–898

    Article  CAS  Google Scholar 

  • Lima AMN, Da Silva IR, Neves JCL, De Novais RF, De Barros NF, De Sá ME, Demolinari MSM, Leite FP (2008) Frações da matéria orgânica do solo após três décadas de cultivo de eucalipto no Vale do Rio Doce-MG. Rev Bras Cienc Do Solo 32:1053–1063

    Article  CAS  Google Scholar 

  • Ma J, Kang F, Cheng X, Han H (2018) Moderate thinning increases soil organic carbon in Larix principis-rupprechtii (Pinaceae) plantations. Geoderma 329:118–128

    Article  CAS  Google Scholar 

  • Macedo MO, Resende AS, Garcia PC, Boddey RM, Jantalia CP, Urquiaga S, Campello EFC, Franco AA (2008) Changes in soil C and N stocks and nutrient dynamics 13 years after recovery of degraded land using leguminous nitrogen-fixing trees. For Ecol Manag 255:1516–1524

    Article  Google Scholar 

  • Maggiotto SR, De OD, Marur CJ, Stivari SMS, Leclerc M, Wagner-Riddle C (2014) Potential carbon sequestration in rubber tree plantations in the northwestern region of the Paraná State, Brazil. Acta Sci Agron 36:239

    Article  Google Scholar 

  • Marín-Spiotta E, Sharma S (2013) Carbon storage in successional and plantation forest soils: a tropical analysis. Glob Ecol Biogeogr 22:105–117

    Article  Google Scholar 

  • Minasny B, Malone BP, McBratney AB, Angers DA, Arrouays D, Chambers A, Chaplot V, Chen Z-S, Cheng K, Das BS, Field DJ, Gimona A, Hedley CB, Hong SY, Mandal B, Marchant BP, Martin M, McConkey BG, Mulder VL, O’Rourke S, Richer-de-Forges A, Odeh I, Padarian J, Paustian K, Pan G, Poggio L, Savin I, Stolbovoy V, Stockmann U, Sulaeman Y, Tsui C-C, Vârgen T-G, Wesemael B, Winowiecki L (2017) Soil carbon 4 per mille. Geoderma 292:59–86

    Article  Google Scholar 

  • Monroe PHM, Gama-Rodrigues EF, Gama-Rodrigues AC, Marques JRB (2016) Soil carbon stocks and origin under different cacao agroforestry systems in Southern Bahia, Brazil. Agric Ecosyst Environ 221:99–108

    Article  Google Scholar 

  • Mosquera-Losada MR, Rigueiro-Rodríguez A, Ferreiro-Domínguez N (2015) Effect of liming and organic and inorganic fertilization on soil carbon sequestered in macro-and microaggregates in a 17-year old Pinus radiata silvopastoral system. J Environ Manag 150:28–38

    Article  CAS  Google Scholar 

  • Mueller KE, Hobbie SE, Chorover J, Rech PB, Eisenhauer N, Castellano MJ, Chadwick AO, Dobies T, Hale CM, Jagodziński AM, Kałucka I, Kieliszewska-Rokicka B, Modrzyński J, Rożen A, Skorupski M, Sobczyk Ł, Stasińska M, Trocha LK, Weiner J, Wierzbicka A, Oleksyn J (2015) Effects of litter traits, soil biota, and soil chemistry on soil carbon stocks at a common garden with 14 tree species. Biogeochemistry 123:313–327

    Article  CAS  Google Scholar 

  • Nadal-Romero E, Cammeraat E, Pérez-Cardiel E, Lasanta T (2016) Effects of secondary succession and afforestation practices on soil properties after cropland abandonment in humid Mediterranean mountain areas. Agric Ecosyst Environ 228:91–100

    Article  Google Scholar 

  • Nogueira LR Jr, De Moraes Gonçalves JL, Lex Engel V, Parrotta J (2011) Soil dynamics and carbon stocks 10 years after restoration of degraded land using Atlantic Forest tree species. For Syst 20:536

    Google Scholar 

  • Oades JM (1988) The retention of organic matter in soils. Biogeochemistry 5:35–70

    Article  CAS  Google Scholar 

  • Oelbermann M, Voroney RP, Kass DCL, Schlönvoigt AM (2006) Soil carbon and nitrogen dynamics using stable isotopes in 19- and 10-year-old tropical agroforestry systems. Geoderma 130:356–367

    Article  CAS  Google Scholar 

  • Pegoraro RF, da Silva IR, de Novais RF, Barros NF, Fonseca S (2010) Estoques de carbono e nitrogênio em frações da matéria orgânica de solos cultivados com eucalipto nos sistemas convencional e fertirrigado. Cienc Rural 40:302–309

    Article  CAS  Google Scholar 

  • Pregitzer KS, Euskirchen ES (2004) Carbon cycling and storage in world forests: Biome patterns related to forest age. Glob Change Biol 10:2052–2077

    Article  Google Scholar 

  • Pulrolnik K, de Barros NF, Silva IR, Novais RF, Brandani CB (2009) Estoques de carbono e nitrogênio em frações lábeis e estáveis da matéria orgânica de solos sob eucalipto, pastagem e cerrado no vale do Jequitinhonha - MG. Rev Bras Cienc Do Solo 33:1125–1136

    Article  CAS  Google Scholar 

  • Richter DD, Markewitz D, Trumbore SE, Wells CG (1999) Rapid accumulation and turnover of soil carbon in a re-establishing forest. Nature 400:56–58

    Article  CAS  Google Scholar 

  • Shi S, Peng C, Wang M, Zhu Q, Yang G, Yang Y, Xi T, Zhang T (2016) A global meta-analysis of changes in soil carbon, nitrogen, phosphorus and sulfur, and stoichiometric shifts after forestation. Plant Soil 407:323–340

    Article  CAS  Google Scholar 

  • Sierra CA, Hoyt AM, He Y, Trumbore SE (2018) Soil organic matter persistence as a stochastic process: age and transit time distributions of carbon in soils. Glob Biogeochem Cycles 32:1574–1588

    Article  CAS  Google Scholar 

  • Smal H, Ligęza S, Pranagal J, Urban D, Pietruczyk-Popławska D (2019) Changes in the stocks of soil organic carbon, total nitrogen and phosphorus following afforestation of post-arable soils: a chronosequence study. For Ecol Manag 451:117536

    Article  Google Scholar 

  • Smith CK, De Assis OF, Gholz HL, Baima A (2002) Soil carbon stocks after forest conversion to tree plantations in lowland Amazonia, Brazil. For Ecol Manag 164:257–263

    Article  Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S, Wattenbach M, Smith J (2008) Greenhouse gas mitigation in agriculture. Philos Trans R Soc B Biol Sci 363:789–813

    Article  CAS  Google Scholar 

  • Soares-Filho B, Rajao R, Macedo M, Carneiro A, Costa W, Coe M, Rodrigues H, Alencar A (2014) Cracking Brazil’s forest code. Science (80-) 344:363–364

    Article  CAS  Google Scholar 

  • Stockmann U, Adams MA, Crawford JW, Field DJ, Henakaarchchi N, Jenkins M, Minasny B, McBratney AB, Courcelles VR, Singh K, Wheeler I, Abbott L, Angers DA, Baldock J, Bird M, Brookes PC, Chenu C, Jastrow JD, Lal R, Lehmann J, O’Donnell AG, Parton WJ, Whitehead D, Zimmermann M (2013) The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric Ecosyst Environ 164:80–99

    Article  CAS  Google Scholar 

  • Su YZ, Wang XF, Yang R, Lee J (2010) Effects of sandy desertified land rehabilitation on soil carbon sequestration and aggregation in an arid region in China. J Environ Manag 91:2109–2116

    Article  CAS  Google Scholar 

  • Systat Software Inc (2014) SigmaPlot for windows, Version 13.0. Registration number: 775302386

  • Thamo T, Pannell DJ (2016) Challenges in developing effective policy for soil carbon sequestration: perspectives on additionality, leakage, and permanence. Clim Policy 16:973–992

    Article  Google Scholar 

  • Tonucci RG, Nair PKR, Nair VD, Garcia R, Bernardino FS (2011) Soil carbon storage in silvopasture and related land-use systems in the Brazilian Cerrado. J Environ Qual 40:833–841

    Article  CAS  PubMed  Google Scholar 

  • Uri V, Aosaar J, Varik M, Becker H, Ligi K, Padari A, Kanal A, Lõhmus K (2014) The dynamics of biomass production, carbon and nitrogen accumulation in grey alder (Alnus incana (L.) Moench) chronosequence stands in Estonia. For Ecol Manag 327:106–117

    Article  Google Scholar 

  • Vicente LC, Gama-Rodrigues EF, Gama-Rodrigues AC (2016) Soil carbon stocks of Ultisols under different land use in the Atlantic rainforest zone of Brazil. Geoderma Reg 7:330–337

    Article  Google Scholar 

  • Walter K, Don A, Flessa H (2015) No general soil carbon sequestration under Central European short rotation coppices. GCB Bioenergy 7:727–740

    Article  CAS  Google Scholar 

  • Wiesmeier M, Urbanski L, Hobley E, Lang B, von Lützow M, Marin-Spiotta E, van Wesemael B, Rabot E, Ließ M, Garcia-Franco N, Wollschläger U, Vogel H-J, Kögel-Knabner I (2019) Soil organic carbon storage as a key function of soils: a review of drivers and indicators at various scales. Geoderma 333:149–162

    Article  CAS  Google Scholar 

  • Yang Y, Luo Y, Finzi AC (2011) Carbon and nitrogen dynamics during forest stand development: a global synthesis. New Phytol 190:977–989

    Article  CAS  PubMed  Google Scholar 

  • Zanatta JA, Bordron B, Holler WA, Rachwal M, Rossi L, Higa R (2020) Índice de alteração do carbono no solo, em conversões de uso do solo envolvendo plantações florestais no Brasil. Embrapa Florestas: Documentos 342:24

    Google Scholar 

Download references

Acknowledgements

We would like to thank the World Resources Institute for the financial support, the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for fellowships of the first author (Process Numbers 159972/2018-3), and the Universidade Federal do Espírito Santo (UFES) and to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes) for access to the data bases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranieri Ribeiro Paula.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project fund: This research was funded by Word Resources Institute.

The online version is available at http://www.springerlink.com.

Corresponding editor: Yu Lei.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paula, R.R., Calmon, M., Lopes-Assad, M.L. et al. Soil organic carbon storage in forest restoration models and environmental conditions. J. For. Res. 33, 1123–1134 (2022). https://doi.org/10.1007/s11676-021-01426-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-021-01426-5

Keywords

Navigation