Skip to main content
Log in

Litter decomposition and nutrient release for two tropical N-fixing species in Rio de Janeiro, Brazil

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Litter production and decomposition are critical to forest productivity, nutrient cycling, and carbon sequestration in tropical woody ecosystems. However, nutrient release and leaf litter stoichiometry in tropical legume tree plantations over the long term after outplanting are poorly understood or even unknown. Toward improving our understanding of the pattern of changes in the decomposition of N-fixing leaf litters and their possible impact on carbon storage, we measured litter production, mass loss and nutrient release for 240 d during litter decomposition for two tropical legume tree species (Plathymenia reticulata and Hymenaea courbaril), in Rio de Janeiro, Brazil. Litter production for P. reticulata was 5.689 kg ha−1 a−1 and 3.231 kg ha−1 a−1 for H. courbaril. The patterns of mass loss rates were similar; however, nutrient release was greater for P. reticulata, while H. courbaril showed immobilization of nutrients, especially for N, which increased by almost 20% in the early phase of decomposition followed by gradual release. Litter from the N-fixing species did differ in nutrient chemistries over time, which was not surprising given that initial nutrient concentrations varied broadly, except for C and P. Most of the nutrient concentrations increased as the remaining litter mass decreased in both species, except for C and K. The C:N and N:P ratios differed between the species, but N:P did not correlate to mass loss. Both species had N-rich leaves, but P. reticulata decomposition was very likely P-limited, while H. courbaril seemed to be co-limited by N and P. The results showed different patterns in nutrient release and the stoichiometry involved in the decomposition dynamics of the two tropical N-fixing species, even though they have similar litter decay rates. Both species, but especially P. reticulata, may help re-establish nutrient cycling in disturbed ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79(3):439–449

    Article  Google Scholar 

  • Ågren GI, Weih M (2020) Multi-Dimensional plant element stoichiometry—Looking beyond carbon, nitrogen, and phosphorus. Front Plant Sci 11:1–23

    Google Scholar 

  • Austin AT, Vivanco L, González-Arzac A, Pérez LI (2014) There’s no place like home? An exploration of the mechanisms behind plant litter-decomposer affinity in terrestrial ecosystems. New Phytol 204:307–314

    Article  Google Scholar 

  • Bachega LR, Bouillet JP, Piccolo MC, Saint-André L, Bouvet JM, Nouvellon Y, Gonçalves JLM, Robin A, Laclau JP (2016) Decomposition of Eucalyptus grandis and Acacia mangium leaves and fine roots in tropical conditions did not meet the home field advantage hypothesis. For Ecol Manage 359:33–43

    Article  Google Scholar 

  • Barantal S, Schimann H, Fromin N (2014) C, N and P fertilization in an Amazonian rainforest supports stoichiometric dissimilarity as a driver of litter diversity effects on decomposition Ecosystems. Proc R Soc B 281:20141682

    Article  PubMed  PubMed Central  Google Scholar 

  • Barroso DG, Souza MGOS, Oliveira TPF, Siqueira DP (2018) Growth of Atlantic forest trees and their influence on topsoil fertility in the Southeastern Brazil. Cerne 24(4):352–359

  • Bataglia OC, Furlani AMC, Teixeira JPF, Furlani PR, Gallo JR (1983) Métodos de análise química de plantas. Campinas, Instituto Agronômico, p 48

    Google Scholar 

  • Berg B, Matzner E (1997) Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environ Rev 5(1):1–25

    Article  CAS  Google Scholar 

  • Berg B, Erhagen B, Johansson MB, Nilsson M, Stendahl J, Trum F, Vesterdal L (2015) Manganese in the litter fall-forest floor continuum of boreal and temperate pine and spruce forest ecosystems–a review. For Ecol Manage 358:248–260

    Article  Google Scholar 

  • Berg B, Steffen KT, McClaugherty C (2007) Litter decomposition rate is dependent on litter Mn concentrations. Biogeochemistry 82:29–39

    Article  CAS  Google Scholar 

  • Bhatnagar JM, Peay KG, Treseder KK (2018) Litter chemistry influences decomposition through activity of specific microbial functional guilds. Ecol Monogr 88(3):429–444

    Article  Google Scholar 

  • Bo F, Zhang Y, Chen HYH, Chen HYH, Wang P, Ren X, Guo J (2020) The C:N: P Stoichiometry of planted and natural Larix principis-rupprechtii stands along altitudinal gradients on the Loess Plateau. China for 11:363

    Google Scholar 

  • Bocock KL, Gilbert OJW (1957) The disappearance of leaf litter under different woodland conditions. Plant Soil 9(2):179–185

    Article  Google Scholar 

  • Bradford MA, Berg B, Maynard DS, Weider WR, Wood SA (2016) Understanding the dominant controls on litter decomposition. J Ecol 104:229–238

    Article  CAS  Google Scholar 

  • Braga JM, Defelipo BV (1974) Determinação espectrofotométrica de fósforo em extratos de solos e plantas. Rev Ceres 1(1):73–85

    Google Scholar 

  • Butenschoen O, Krashevska V, Maraun M, Marian F, Sandmann D, Scheu S (2014) Litter mixture effects on decomposition in tropical montane rainforests vary strongly with time and turn negative at later stages of decay. Soil Biol Biochem 77:121–128

    Article  CAS  Google Scholar 

  • Caldeira MVW, Godinho TO, Moreira FL, Campanharo IF, Castro KC, Mendonça AR, Trazzi PA (2019) Litter as an ecological indicator of forest restoration processes in a dense ombrophylous lowland forest. Floresta e Ambient 26(1):20180411

    Article  Google Scholar 

  • Cartaxo SL, Souza MMA, Albuquerque UP (2010) Medicinal plants with bioprospecting potential used in semi-arid northeastern Brazil. J Ethnopharmacol 131(2):326–342

    Article  PubMed  Google Scholar 

  • Cassart B, Basia AA, Jonard M, Ponette Q (2020) Average leaf litter quality drives the decomposition of single-species, mixed-species and transplanted leaf litters for two contrasting tropical forest types in the Congo Basin (DRC). Ann for Sci 77:1–20

    Article  Google Scholar 

  • Chapin F, Matson P, Vitousek P (2002) Principles of terrestrial ecosystem ecology. Springer, New York, p 536

    Book  Google Scholar 

  • Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, Steege HT, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardized and easy measurement of plant functional traits worldwide. Aust J Bot 51(1):335–380

    Article  Google Scholar 

  • Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Hanguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Diáz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westtoby M (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071

    Article  PubMed  Google Scholar 

  • Duarte EMGG, Cardoso IM, Stijnen T, Mendonça MAFC, Coelho MS, Cantarutti RB, Kuyper TW, Villani EMA, Mendonça ES (2013) Decomposition and nutrient release in leaves of Atlantic Rainforest tree species used in agroforestry systems. Agrofor Syst 87:835–847

    Article  Google Scholar 

  • Fanin N, Fromin N, Buatois B, Hättenschwiler S (2013) An experimental test of the hypothesis of non-homeostatic consumer stoichiometry in a plant litter-microbe system. Ecol Lett 16:764–772

    Article  PubMed  Google Scholar 

  • Fay PA, Prober SM, Harpole WS, Knops JMH, Bakker JD, Borer ET, Lind EM, MacDougall AS, Seabloom EW, Wragg PD, Adler PB, Blumenthal DM, Buckley YM, Chu C, Cleland EE, Collins SL, Davies KF, Du G, Feng X, Firn J, Gruner DS, Hagenah N, Hautier Y, Heckman RW, Jin VL, Kirkman KP, Klein J, Ladwig LM, McCulley RL, Melbourne BA, Mitchell CE, Moore JL, Morgan JW, Risch AC, Shutz M, Stevens CJ, Wedin DA, Yang LH (2015) Grassland productivity limited by multiple nutrients. Nat Plants 1:15080

    Article  CAS  PubMed  Google Scholar 

  • Güsewell S, Gessner MO (2009) N: P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms. Funct Ecol 23:211–219

    Article  Google Scholar 

  • Güsewell S, Verhoeven JTA (2006) Litter N: P ratios indicate whether N or P limits the decomposability of graminoid leaf litter. Plant Soil 287:131–143

    Article  Google Scholar 

  • Hättenschwiler S, Jørgensen HB (2010) Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest. J Ecol 98:754–763

    Article  Google Scholar 

  • Hobbie SE (2015) Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends Ecol Evol 30(6):357–363

    Article  PubMed  Google Scholar 

  • Lanuza O, Casanoves F, Delgado D, van den Meersche K (2018) Leaf litter stoichiometry affects decomposition rates and nutrient dynamics in tropical forests under restoration in Costa Rica. Restor Ecol 27(3):549–558

    Article  Google Scholar 

  • Leblanc HA, Nygren P, McGraw RL (2006) Green mulch decomposition and nitrogen release from leaves of two Inga spp. in an organic alley-cropping practice in the humid tropics. Soil Biol Biochem 38:349–358

    Article  CAS  Google Scholar 

  • Liu Y, Shen X, Chen Y, Wang L, Chen Q, Zhang J, Xu Z, Tan B, Zhang L, Xiao J, Zhu P, Chen L (2019) Litter chemical quality strongly affects forest floor microbial groups and ecoenzymatic stoichiometry in the subalpine forest. Ann for Sci 76:1–15

    Article  Google Scholar 

  • Ludvichak AA, Schumacher MV, Dick G, Momolli DR, Souza HP, Guimarães CC (2016) Nutrient return through litterfall in a Eucalyptus dunnii Maiden stand in sandy soil. Rev Árvore 40(6):1041–1048

    Article  Google Scholar 

  • Makkonen M, Berg MP, Handa IT, Hättenschwiler S, van Ruijven J, van Bodegom PM, Aerts R (2012) Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient. Ecol Lett 15:1033–1041

    Article  PubMed  Google Scholar 

  • Manzoni S, Trofymow JA, Jackson RB, Porporato A (2010) Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecol Monogr 80(1):89–106

    Article  Google Scholar 

  • Marchante E, Marchante H, Freitas H, Kjøller A, Struwe S (2019) Decomposition of an N-fixing invasive plant compared with a native species: Consequences for ecosystem. Appl Soil Ecol 138:19–31

    Article  Google Scholar 

  • Martinelli LA, Lins SRM, Silva JCS (2017) Fine litterfall in the Brazilian Atlantic Forest. Biotropica 49(4):443–451

    Article  Google Scholar 

  • Martins TGV, Reis GG, Reis MGF, Telles LAA, Lage MR, Mendes GGC, Pinto DL, Castro NLM, Lorenzon AS, Silva RS, Gonzáles DGE (2020) Potential planting areas for native tree species in Minas Gerais state, Brazil, based on environmental variables and wood demand. Ecol Modell 432:109211

    Article  Google Scholar 

  • Mendonça ES, Stott DE (2003) Characteristics and decomposition rates of pruning residues from a shaded coffee system in Southeastern Brazil. Agrofor Syst 57(2):117–125

    Article  Google Scholar 

  • Moorhead DL, Lashermes G, Sinsabaugh RL, Weintraub MN (2013) Calculating co-metabolic costs of lignin decay and their impacts on carbon use efficiency. Soil Biol Biochem 66:17–19

    Article  CAS  Google Scholar 

  • Myers N, Mittermeier R, Mittermeier C, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 16(4):853–858

    Article  Google Scholar 

  • Nicole MF, Gleidy AS, Karine NC, Magali GS, Cogo JC, Belo CAD, Santos MG, Groppo FC, Oshima-Franco Y (2011) Inhibition of Bothrops jararacussu venom activities by Plathymenia reticulata Benth extracts. J Venom Res 2(4):52–58

    Google Scholar 

  • Ochoa-Hueso R, Delgado-Baquerizo M, An King PT, Benham M, Arca V, Power SA (2019) Ecosystem type and resource quality are more important than global change drivers in regulating early stages of litter decomposition. Soil Biol Biochem 129:144–152

    Article  CAS  Google Scholar 

  • Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44(2):322–331

    Article  Google Scholar 

  • Osono T, Takeda H (2004) Potassium, calcium, and magnesium dynamics during litter decomposition in a cool temperate forest. J for Res 9(1):23–31

    Article  CAS  Google Scholar 

  • Osono T, Takeda H, Azuma JI (2008) Carbon isotope dynamics during leaf litter decomposition with reference to lignin fractions. Ecol Res 23:51–55

    Article  CAS  Google Scholar 

  • Pandey RR, Sharma G, Tripathi SK, Singh AK (2007) Litterfall, litter decomposition and nutrient dynamics in a subtropical natural oak forest and managed plantation in Northeastern India. For Ecol Manage 240:96–104

    Article  Google Scholar 

  • Parsons SA, Congdon RA (2008) Plant litter decomposition and nutrient cycling in north Queensland tropical rain-forest communities of differing successional status. J Trop Ecol 24(3):317–327

    Article  Google Scholar 

  • Pérez-Harguindeguy N, Díaz S, Cornelissen JHC, Vendramini F, Cabido M, Castellanos A (2000) Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant Soil 218:21–30

    Article  Google Scholar 

  • R Core team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Sigoillot J-C, Berrin J-G, Bey M, Lesage-Meessen L, Levasseur A, Lomascolo A, Record E, Uzan-Boukhris E (2012) Fungal strategies for lignin degradation. Adv Bot Res 61:263–308

    Article  CAS  Google Scholar 

  • Singh KP, Singh PK, Tripathi SK (1999) Litterfall, litter decomposition and nutrient release patterns in four native tree species raised on coal mine spoil at Singrauli. India Biol Fertil Soils 29(4):371–378

    Article  Google Scholar 

  • Stevenson FJ, Cole MA (1999) Cycles of soil. Wiley, Hoboken, p 427

    Google Scholar 

  • Tedesco MJ, Gianello C, Bissani CA, Bohnen H, Volkweiss SJ (1995) Análise de solo, plantas e outros materiais. Porto Alegre, p 174

  • Tessier JT, Raynal DJ (2003) Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. J Appl Ecol 40:523–534

    Article  CAS  Google Scholar 

  • Tripathi SK, Sumida A, Shibata H, Ono K, Uemura S, Kodama Y, Hara T (2006) Leaf litterfall and decomposition of different above- and belowground parts of birch (Betula ermanii) trees and dwarf bamboo (Sasa kurilensis) shrubs in a young secondary forest in Northern Japan. Biol Fertil Soils 43(2):237–246

    Article  Google Scholar 

  • Van Soest P, Wine RH (1967) Development of a comprehensive system of feed analysis and its applications to forages. J Anim Sci 26(2):119–128

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York

    Book  Google Scholar 

  • Villela D, de Mattos E, Pinto A, Vieira SA, Martinelli LA (2012) Carbon and nitrogen stock and fluxes in coastal Atlantic forest of southeast Brazil: potential impacts of climate change on biogeochemical functioning. Brazilian J Biol 72(3):633–642

    Article  CAS  Google Scholar 

  • Vitória AP, Alves LF, Santiago LS (2019) Atlantic forest and leaf traits: an overview. Trees 33(6):1535–1547

    Article  Google Scholar 

  • Vivanco L, Austin AT (2006) Intrinsic effects of species on leaf litter and root decomposition: a comparison of temperate grasses from North and South America. Oecologia 150:97–107

    Article  PubMed  Google Scholar 

  • Vivanco L, Austin AT (2019) The importance of macro- and micro-nutrients over climate for leaf litter decomposition and nutrient release in Patagonian temperate forests. For Ecol Manage 11:1–14

    Google Scholar 

  • Vu QV (2011) ggbiplot: a ggplot2 based biplot. R package version 0.55

  • Waring BG, Weintraub SR, Sinsabaugh RL (2014) Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils. Biogeochemistry 117:101–113

    Article  CAS  Google Scholar 

  • Yu MF, Tao Y, Liu W, Xing W, Liu G, Wang L, Ma L (2020) C, N, and P stoichiometry and their interaction with different plant communities and soils in subtropical riparian wetlands. Environ Sci Pollut Res 27:1024–1034

    Article  CAS  Google Scholar 

  • Zhang J, Zhao N, Liu C, Yang H, Li M, Yu G, Wilcox K, Yu Q, He N (2018) C:N:P stoichiometry in China’s forests: from organs to ecosystems. Funct Ecol 32:50–60

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Floresta Estadual José Zago administrators for logistical support and colleagues from the Department of Geosciences and Natural Resources Management for suggestions on the data and Senhao Wang for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Pessanha Siqueira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project Funding: This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (141513/2017-9), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (E26/200.84/2019), and Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (88881.361830/2019-01).

Corresponding editor: Yanbo Hu

The online version is available at http://www.springerlink.com

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 69 KB)

Supplementary file2 (DOCX 346 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siqueira, D.P., de Carvalho, G.C.M.W., de Souza Silva, J.G. et al. Litter decomposition and nutrient release for two tropical N-fixing species in Rio de Janeiro, Brazil. J. For. Res. 33, 487–496 (2022). https://doi.org/10.1007/s11676-021-01383-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-021-01383-z

Keywords

Navigation