Skip to main content
Log in

Behavior of wood basic density according to environmental variables

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

The relationships between climate conditions and wood density in tropical forests are still poorly understood. To quantify spatial dependence of wood density in the state of Minas Gerais (MG, Brazil), map spatial distribution of density, and correlate density with climate variables, we extracted data from the Forest Inventory of Minas Gerais for 1988 trees scaled throughout the territory and measured wood density of discs removed from the trees. Environmental variables were extracted from the database of the Ecological-Economic Zoning of Minas Gerais. For spatial analysis, tree densities were measured at 44 georeferenced sampling points. The data were subjected to exploratory analysis, variography, cross-validation, model selection, and ordinary kriging. The relationships between wood density and environmental variables were calculated using dispersion matrices, linear correlation, and regression. Wood density proved to be highly spatially dependent, reaching a correlation of 96%, and was highly continuous over a distance of 228 km. The distribution of wood density followed a continuous gradient of 514–659 kg m−3, enabling correlation with environment variables. Density was correlated with mean annual precipitation (− 0.57), temperature (0.63), and evapotranspiration (0.83). Geostatistical methods proved useful in predicting wood density in native tropical forests with different climate conditions. Our results confirmed the sensitivity of wood density to climate change, which could affect future carbon stock in forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • ABNT standard 11941 (2003) Madeira – determinação da densidade básica. Rio de Janeiro: Associação Brasileira de Normas Técnicas, pp 1–6

  • Antonova GF, Stasova VV (1997) Effects of environmental factors on wood formation in larch (Larix sibirica Ldb.) stems. Trees-Struct Funct 11:462–468

    Google Scholar 

  • Baker TR, Phillips OL, Malhi Y, Almeida S, Arroyo L, Fiore AD, Erwin T, Killeen TJ, Laurance SG, Laurance WF, Lewis SL, Lloyd J, Monteagudo A, Neill DA, Patin S, Pitman NA, Silva JNM, Martinez RV (2004) Variation in wood density determines spatial patterns in Amazonian forest biomass. Glob Change Biol 10(5):545–562

    Article  Google Scholar 

  • Barbosa TL, Oliveira JTS, Rocha SMG, Camara AP, Graziela BV, Rosado AM, Leite FP (2019) Influence of site in the wood quality of in plantations in Brazil. South for 81(3):1–7

    Article  Google Scholar 

  • Bardi PE, Manzi AO, Condé TM, Barbosa RI, Fearnside PM (2016) Spatial distribution of forest biomass in Brazil’s state of Roraima, northern Amazonia. For Ecol Manag 377:170–181

    Article  Google Scholar 

  • Beedlow PA, Lee EH, Tingey DT, Waschmann RS, Burdick CA (2013) The importance of seasonal temperature and moisture patterns on growth of Douglas-fir in western Oregon, U.S.A. Agr For Meteorol 169:174–185

    Article  Google Scholar 

  • Bergès L, Nepveu G, Franc A (2008) Effects of ecological factors on radial growth and wood density components of sessile oak (Quercus petraea Liebl.) in Northern France. For Ecol Manag 255:567–579

    Article  Google Scholar 

  • Biondi F, Myers DE, Avery CC (1994) Geostatistically modeling stem size and increment in an old- growth forest. Can J for Res 24:1354–1368

    Article  Google Scholar 

  • Bohora Schlickmann M, Silva AC, Oliveira LM, Matteucci DO, Machado FD, Cuchi T, Duarte E, Higuchi P (2020) Specific leaf area is a potential indicator of tree species sensitive to future climate change in the mixed Subtropical Forests of southern Brazil. Ecol Indic 116:106477

    Article  Google Scholar 

  • Burrough PA, McDonnell RA, Lloyd CD (2015) Principles of geographical information systems, 3rd edn. Oxford University Press, Oxford, p 330

    Google Scholar 

  • Camarero JJ, Guitiérrez E (2017) Wood density of silver fir reflects drought and cold stress across climatic and biogeographic gradientes. Dendrochronologia 45:101–112

    Article  Google Scholar 

  • Cellmer R (2014) The possibilities and limitations of geostatistical methods in real estate market analyses. Real Estate Manag Valuat 22:54–62

    Article  Google Scholar 

  • Cermák J, Nadezhdina N, Trcala M, Simon J (2015) Open field-applicable instrumental methods for structural and functional assessment of whole trees and stands. iForest 8(3):226–278

    Article  Google Scholar 

  • Charnet R, Freire CAL, Charnet EMR, Bonvino H (1999) Análise de modelos de regressão linear. Unicamp Press, Campinas, pp 27–296

    Google Scholar 

  • Chave J, Muller-Landau HC, Baker TR, Easdale TA, Steege HT, Webb CO (2006) Regional and phylogenetic variation of wood density across 2,456 neotropical tree species. Ecol Appl 16:2356–2367

    Article  PubMed  Google Scholar 

  • Chilès JP, Desassis N (2018) Fifty years of kriging. In: Handbook of mathematical geosciences. Springer, Berlin, pp 589–612

  • Colgan MS, Swemmer T, Asner GP (2014) Structural relationships between form factor, wood density, and biomass in African savanna woodlands. Trees Struct Funct 28:91–102

    Article  Google Scholar 

  • Collalti A, Ibrom A, Stockmarr A, Cescatti A, Alkama R, Fernández-Martínez M, Matteucci G (2020) Forest production efficiency increases with growth temperature. Nat Commun 11:5322. https://doi.org/10.1038/s41467-020-19187-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colmanetti MAA, Weiskittel A, Barbosa LM, Shirasuna RT, Lima FC, Ortiz PRT, Catharino ELM, Barbosa TC, Couto HTZ (2018) Aboveground biomass and carbon of the highly diverse Atlantic Forest in Brazil: comparison of alternative individual tree modeling and prediction strategies. Carbon Manag 9:383–397

    Article  CAS  Google Scholar 

  • Costa LRR, Dolácio CJF, Zea-Camaño JD, Oliveira RS, Pelissari AL, Maciel MNM (2020a) Variabilidad espacial de Swietenia macrophylla en sistema agroforestal de la Amazonia brasileña. Madera y Bosques 26(1):e2611937

    Article  Google Scholar 

  • Costa SE de L, Santos RC, Vidaurre GB, Castro RVO, Rocha SMG, Carneiro RL, Campoe OC, Santos CPS, Gomes IRF, Carvalho NFO, Trugilho PF (2020b) The effects of contrasting environments on the basic density and mean annual increment of wood from Eucalyptus clones. For Ecol Manag 458:117807

  • Crouzeilles R, Ferreira MS, Chazdon RL, Lindenmayer DB, Sansevero JBB, Monteiro L, Iribarrem A, Latawiec AE, Strassburg BBN (2017) Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. Sci Adv 3:1–8

    Article  Google Scholar 

  • David HC, Araújo EJG, Morais VA, Scolforo JRS, Marques JM, Netto SP, MacFarlane DW (2017) Carbon stock classification for tropical forests in Brazil: understanding the effect of stand and climate variables. For Ecol Manag 404:241–250

    Article  Google Scholar 

  • de Meira-Junior MS, Pinto JRR, Ramos NO, Miguel EP, Gaspar RO, Phillips OL (2020) The impact of long dry periods on the aboveground biomass in tropical forests: 20 years of monitoring. Carbon Bal Manag. https://doi.org/10.1186/s13021-020-00147-2

  • Downes G, Harwood C, Washusen R, Ebdon N, Evans R, White D, Dumbrell I (2014) Wood properties of Eucalyptus globulus at three sites in Western Australia: effects of fertilizer and plantation stocking. Aust for 77:179–188

    Article  Google Scholar 

  • Environmental Systems Research Institute—ESRI (2010) ArcGIS and ArcINFO [computer program]. Version 10.0. Redlands, CA, USA

  • Environmental Systems Research Institute—ESRI (2013) Cross validation: geostatisical analyst. Redlands: ArcGIS Resources. Web site [Online 10 July 2019]. http://resources.arcgis.com/en/help/main/10.1/index.html#//00300000000z000000

  • Feng R, Zhong Y, Wu Y, He D, Xu X, Zhang L (2016) Nonlocal total variation subpixel mapping for hyperspectral remote sensing imagery. Remote Sens 8(3):250

    Article  Google Scholar 

  • Filipescu CN, Lowell EC, Koppenaal R, Mitchell AK (2014) Modeling regional and climatic variation of wood density and ring width in intensively managed Douglas-fir. Can J for Res 44:220–229

    Article  Google Scholar 

  • Freitas TP, Oliveira JTS, Paes JB, Vidaurre GB, Lima JL (2019) Environmental effect on growth and characteristics of Eucalyptus wood. Floram 26(4):1–10

    Article  Google Scholar 

  • Gao S, Wang X, Wiemann MC, Brashaw BK, Ross RJ, Wang L (2017) A critical analysis of methods for rapid and nondestructive determination of wood density in standing trees. Ann For Sci 74(27):26

    Google Scholar 

  • Gomes GC, Gomes JCC, Barbieri RL, Miura AK, Sousa LPD (2019) Environmental and ecosystem services, tree diversity and knowledge of family farmers. Floram 26(1): e20160314.

  • Gonçalves ACA, Folegatti MV, Mata JDV (2001) Análises exploratória e geoestatística da variabilidade de propriedades físicas de um argissolo vermelho. Acta Sci Agron 23:1149–1157

    Google Scholar 

  • Guedes ICL, Mello JM, Mello CR, Oliveira AD, Silva ST, Scolforo JRS (2012) Técnicas geoestatísticas e interpoladores espaciais na estratificação de povoamentos de Eucalyptus sp. Ciência Florestal 22:541–550

    Article  Google Scholar 

  • Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126:457–461

    Article  PubMed  Google Scholar 

  • Ibanez T, Chave J, Barrabé L, Elodie B, Boutreux T, Trueba S, Vandrot H, Birnbaum P (2017) Community variation in wood density along a bioclimatic gradient on a hyper-diverse tropical island. J Veg Sci 28:19–33

    Article  Google Scholar 

  • Isaaks EH, Srivastava RM (1989) Applied geostatistics. Oxford University Press, New York, p 561

    Google Scholar 

  • Johnston K, Ver Hoef JM, Krivoruchko K, Lucas N (2001) Using ArcGIS geostatistical analyst. Environmental Systems Research Institute – ESRI, Redlands. pp 49–219

  • Journel AG, Huijbregts CJ (1978) Mining geostatistics. Academic, London, p 600

    Google Scholar 

  • Kanevski M, Maignan M (2004) Analysis and modelling of spatial environmental data. EPFL Press, Lausanne, p 300

    Google Scholar 

  • Kantavichai R, Briggs D, Turnblom E (2010) Modeling effects of soil, climate, and silviculture on growth ring specific gravity of Douglas-fir on a drought-prone site in western Washington. For Ecol Manag 259:1085–1092

    Article  Google Scholar 

  • Kenzo T, Sano M, Yoneda R, Chann S (2017) Comparison of wood density and water content between dry evergreen and dry deciduous forest trees in central Cambodia. J Jpn Agric 51:363–374

    Google Scholar 

  • Kim HK, Park J, Hwang I (2014) Investigating water transport through the xylem network in vascular plants. J Exp Bot 65(7):1895–1904

    Article  CAS  PubMed  Google Scholar 

  • Kuppler J, Albert CH, Ames GM, Armbruster WS, Boenisch G, Boucher FC, Campbell DR, Carneiro LT, Chacón-Madrigal E, Enquist BJ, Fonseca CR, Gómez JM, Guisan A, Higuchi P, Karger DN, Kattge J, Kleyer M, Kraft NJB, Larue-Kontić AAC, Lázaro A, Lechleitner M, LoughnanD MV, Niinemets Ü, Overbeck GE, Parachnowitsch AL, Perfectti F, Pillar VD, Costa DS, Sletvold N, Stang M, Santos IA, Streit H, WrightJ ZM, Junker RR (2020) Global gradients in intraspecific variation in vegetative and floral traits are partially associated with climate and species richness. Glob Ecol Biogeogr 29:992–1007

    Article  Google Scholar 

  • Landim PMB (2006) Sobre Geoestatística e Mapas. Terrae Didat 2:19–33

    Article  Google Scholar 

  • Longui EL, Pires GT, Freitas MLM, Romeiro D, Florsheim SMB, Zanatto ACS (2017) Genetic versus environmental influence on radial variation in Myracrodruon urundeuva wood. Floram 24:e00119114

    Article  Google Scholar 

  • Martinez-Antunez P, Hernandez-Diaz JC, Wehenkel C, Lopez-Sanchez CA (2015) Estimación de la densidad de especies de coníferas a partir de variables ambientales. Madera y Bosques 21:23–33

    Article  Google Scholar 

  • Meinzer FC (2003) Functional convergence in plant responses to the environment. Oecologia 134:1–11

    Article  PubMed  Google Scholar 

  • Mello JM, Batista JLF, Júnior PJR, Oliveira MS (2005) Ajuste e seleção de modelos espaciais de semivariograma visando à estimativa volumétrica de Eucalyptus grandis. Scientia Forestalis 69:25–37

    Google Scholar 

  • Mello JM, Diniz FS, Oliveira AD, Mello CR, Scolforo JRS, Acerbi Junior FW (2009) Continuidade espacial para características dendrométricas (número de fustes e volume) em plantios de Eucalyptus grandis. Rev Árvore 33:185–194

    Article  Google Scholar 

  • Muller-Landau HC (2004) Interspecific and intersite variation in wood density of tropical trees. Biotropica 36:20–32

    Google Scholar 

  • Nabais C, Hansen JK, David-Schwartz R, Klisz M, López R, Rozenberg P (2018) The effect of climate on wood density: What provenance trials tell us? For Ecol Manag 408:148–156

    Article  Google Scholar 

  • Nelson RA, Francis EJ, Berry JA, Cornwell WK, Anderegg LDL (2020) The role of climate niche, geofloristic history, habitat preference, and allometry on wood density within a california plant community. Forests 11(1):105

    Article  Google Scholar 

  • Nogueira EM, Fearnside PM, Nelson BW, França MB (2007) Wood density in forests of Brazil’s ‘arc of deforestation’: implications for biomass and flux of carbon from land-use change in Amazonia. For Ecol Manag 248:119–135

    Article  Google Scholar 

  • Olale K, Yenesew A, Jamnadass R, Sila A, Shepherd K (2019) A simple field based method for rapid wood density estimation for selected tree species in Western Kenya. Sci Afr 5:e00149

    Google Scholar 

  • Oliveira GMV (2014) Densidade da madeira em Minas Gerais: amostragem, espacialização e relação com variáveis ambientais. PhD thesis, Departamento de Ciências Florestais, Universidade Federal de Lavras. UFLA Press, Lavras, pp 29–55

  • Oliveira AD, Carvalho LMT (2008) Zoneamento ecológico-econômico do Estado de Minas Gerais: componentes geofísico e biótico. UFLA Press, Lavras, pp 1–14

    Google Scholar 

  • Oliveira GMV, Mello JM, Trugilho PF, Scolforo JRS, Altoé TF, Neto AJSN, Oliveira AD (2012) Efeito do ambiente sobre a densidade da madeira em diferentes fitofisionomias do estado de Minas Gerais. Cerne 18:345–352

    Article  Google Scholar 

  • Pelissari AL, Figueiredo Filho A, Netto SP, Ebling AA, Roveda M, Sanquetta CR (2017) Geostatistical modeling applied to spatiotemporal dynamics of successional tree species groups in a natural Mixed Tropical Forest. Ecol Ind 78:1–7. https://doi.org/10.1016/j.ecolind.2017.02.044

    Article  Google Scholar 

  • Plourde BT, Boukili VK, Chazdon RL (2015) Radial changes in wood specific gravity of tropical trees: inter and intraspecific variation during secondary succession. Funct Ecol 29:111–120

    Article  Google Scholar 

  • Pretzsch H, Biber P, Schütze G, Kemmerer J, Uhl E (2018) Wood density reduced while wood volume growth accelerated in Central European forests since 1870. For Ecol Manag 429:589–616

    Article  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. Viena: R Foundation for Statistical Computing, Website [Online 10 July 2019] http://www.R-project.org

  • Ramananantoandro T, Ramanakoto MF, Rajoelison GL, Randriamboavonjy JC, Rafidimanantsoa HP (2016) Influence of tree species, tree diameter and soil types on wood density and its radial variation in a mid-altitude rainforest in Madagascar. Ann for Sci 73(4):1113–1124

    Article  Google Scholar 

  • Ribeiro-Júnior PJ, Diggle PJ (2001) GeoR: a package for geostatistical analysis. R-News 1:15–18

    Google Scholar 

  • Rodal MJN, Nascimento LM (2006) The arboreal component of a dry forest in northeastern Brazil. Braz J Biol 66(2A):479–491

    Article  CAS  PubMed  Google Scholar 

  • Sanquetta MNI, Sanquetta CR, Mognon F, Corte APD, Maas GCB (2016) Wood density and carbon content in young teak individuals from Pará, Brazil. Científica 44:608–614

    Article  Google Scholar 

  • Scolforo JRS, Oliveira AD, Acerbi Júnior FW (2008) Inventário florestal de Minas Gerais: equações de volume, peso de matéria seca e carbono para diferentes fisionomias da flora nativa. UFLA Press, Lavras, pp 1–20

    Google Scholar 

  • Silveira EMO, Mello JM, Acerbi-Júnior FW, Carvalho LMT (2018) Object-based land-cover change detection applied to Brazilian seasonal savannahs using geostatistical features. Int J Remote Sens 39:2597–2619

    Article  Google Scholar 

  • Silveira EMO, Reis AA, Terra MCNS, Withey KD, Mello JM, Acerbi-Júnior FW, Ferraz Filho AC, Mello CR (2019) Spatial distribution of wood volume in Brazilian savannas. An Acad Bras Ciênc 91(4):e20180666

    Article  PubMed  Google Scholar 

  • Vaughan D, Auty D, Kolb TE, Meador AJS, Mackes KH, Dahlen J, Moser WK (2019) Climate has a larger effect than stand basal area on wood density in Pinus ponderosa var. scopulorum in the southwestern USA. Ann For Sci 76(3):85. https://doi.org/10.1007/s13595-019-0869-0

    Article  Google Scholar 

  • Veloso HP, Rangel-Filho ALR, Lima JCA (1991) Classificação da vegetação brasileira adaptada a um sistema universal. IBGE Press, Rio de Janeiro, pp 15–108

    Google Scholar 

  • Vieira AS, Alves LF, Aidar M, Araújo LS, Baker T, Batista JLF, Campos MC, Camargo PB, Chave J, Delitti WBC, Higuchi N, Honorio E, Joly CA, Keller M, Martinelli LA, Mattos EA, Metzker T, Phillips O, Santos FAM, Shimabukuro MT, Silveira M, Trumbore SE (2008) Estimation of biomass and carbon stocks: the case of the Atlantic Forest. Biota Neotrop 8(2):21–29. https://doi.org/10.1590/S1676-06032008000200001

    Article  Google Scholar 

  • Vismara ES (2009) Mensuração da biomassa e construção de modelos para construção de equações de biomassa. Master thesis, Departamento de Ciências Florestais, Escola Superior de Agricultura “Luiz de Queiroz”. USP Press, Piracicaba, pp 30–37. https://teses.usp.br/teses/disponiveis/11/11150/tde-18052009-155116/pt-br.php

  • Woodcock DW (2000) Wood specific gravity of trees and forest types in the southern Peruvian Amazon. Acta Amaz 30:589–599

    Article  Google Scholar 

  • Yamamoto JK (2001) Avaliação e classificação de reservas minerais. USP Press, São Paulo, pp 35–49

    Google Scholar 

  • Zobel BJ, Jett JB (1995) Genetics of wood production. Springer series in wood science. Springer, Berlin, pp 26–50. https://doi.org/10.1007/978-3-642-79514-5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiago Campos Monteiro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The online version is available at http://www.springerlink.com

Corresponding editor: Zhu Hong

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, G.M.V., de Mello, J.M., de Mello, C.R. et al. Behavior of wood basic density according to environmental variables. J. For. Res. 33, 497–505 (2022). https://doi.org/10.1007/s11676-021-01372-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-021-01372-2

Keywords

Navigation