Skip to main content
Log in

Contemporary climate influence on variability patterns of Anadenanthera colubrina var. cebil, a key species in seasonally dry tropical forests

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

The distribution of many plant species has been shaped by climate changes, and their current phenotypic and genetic variability reflect microclimatically suitable habitats. This study relates contemporary climate to variability patterns of phenotypic traits and molecular markers in the Argentinean distribution of Anadenanthera colubrina var. cebil, as well as to identify the most relevant phenotypic trait or molecular marker associated with those patterns. Individuals from four populations in both biogeographic provinces, Paranaense and Yungas, were investigated. Multivariate analyses and multiple linear regressions were carried out to determine relationships among phenotypic traits and nuclear microsatellites, respectively, to climatic variables, and to identify the phenotypic traits as well as nuclear microsatellite loci most sensitive to climate. Two and three clusters of individuals were detected based on genetic and phenotypic data, respectively. Only clusters based on genetic data reflected the biogeographic origin of individuals. Reproductive traits were the most relevant indicators of climatic effects. One microsatellite locus Ac41.1 appeared to be non-neutral presenting a strong correlation with climate variable temperature seasonality. Our findings show complex patterns of genetic and phenotypic variability in the Argentinean distribution of A. colubrina var. cebil related to the present or contemporary climate, and provides an example for an integrative approach to better understand climate impact on contemporary genetic and phenotypic variability in light of global climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barrandeguy ME, García MV, Prinz K, Rivera Pomar R, Finkeldey R (2014) Genetic structure of disjunct Argentinean populations of the subtropical tree Anadenanthera colubrina var. cebil (Fabaceae). Pl Syst Evol 300:1693–1705. https://doi.org/10.1007/s00606-014-0995-y

    Article  CAS  Google Scholar 

  • Barrandeguy ME, Prado DE, Goncalves AL, García MV (2016) Demografía histórica de Anadenanthera colubrina var. cebil (Leguminosae) en Argentina. Bol Soc Argent Bot 51:689–703

    Article  Google Scholar 

  • Barrandeguy ME, Prinz K, García MV, Finkeldey R (2012) Development of microsatellite markers for Anadenanthera colubrina var. cebil (Fabaceae) a native tree from South America. Am J Bot 99(9):e372–e374

    Article  Google Scholar 

  • Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proc R Soc Lond Ser B Biol Sci 263:1619–1626. https://doi.org/10.1098/rspb.1996.0237

    Article  Google Scholar 

  • Boshier D, Amaral W (2004) Threats to forest ecosystems and challenges for the conservation and sustainable use of forest genetic resources. In: Vinceti B, Amaral W, Meilleur B (eds) Challenges in managing forest genetic resources for livelihoods: Examples from Argentina and Brazil. Rome, Italy, International Plant Genetic Resources Institute, pp 7–28

    Google Scholar 

  • Brown AD, Grau HR, Malizia LR, Grau A (2001) Argentina. In: Kappelle M, Brown AD (eds) Bosques nublados Del Neotrópico. Costa Rica, Editorial IMBIO, pp 623–658

    Google Scholar 

  • Bueno ML, Dexter KG, Pennington RT, Pontara V, Neves DM, Ratter JA, de Oliveira-Filho AT (2018) The environmental triangle of the Cerrado Domain Ecological factors drivng shifts in tree species composition between forests and savannas. J Ecol 106(5):2109–2120. https://doi.org/10.1111/1365-2745.12969

    Article  Google Scholar 

  • Cabrera A (1994) Enciclopedia Argentina de Agricultura y Jardinería. Fascículo 1: Regiones Fitogeográficas Argentinas. Buenos Aires, Argentina: Acme, pp 1–85.

  • Caetano S, Prado DE, Pennington RT, Beck S, Oliveira-Filho A, Spichiger R, Naciri Y (2008) The history of Seasonally Dry Tropical Forests in eastern South America: inferences from the genetic structure of the tree Astronium urundeuva(Anacardiaceae). Molec Ecol 17:3147–3159. https://doi.org/10.1111/j.1365-294X.2008.03817.x

    Article  CAS  Google Scholar 

  • Cialdella AM (2000) Flora Fanerogámica Argentina, Fascículo 67: Fabaceae Subfamilia Mimosoideae. Proflora-CONICET, Córdoba, Argentina, pp 1–10

    Google Scholar 

  • Cochrane A, Daws MI, Hay FI (2011) Seed-based approach for identifying flora at risk from climate warming. Aust Ecol 36:923–935. https://doi.org/10.1111/j.1442-9993.2010.02211.x

    Article  Google Scholar 

  • Davis MB, Shaw RG (2001) Range shifts and adaptive responses of Quaternary climate changes. Science 292:673–679. https://doi.org/10.1126/science.292.5517.673

    Article  CAS  PubMed  Google Scholar 

  • Davis MB, Shaw RG, Etterson JR (2005) Evolutionary responses to changing climate. Ecology 86:1704–1714. https://doi.org/10.1890/03-0788

    Article  Google Scholar 

  • De Noir FA, Bravo S, Abdala R (2002) Dispersal mechanisms in some woody native species of Chaco Occidental and Serrano. Quebracho 9:140–150

    Google Scholar 

  • DRYFLOR (2016) Plant diversity patterns in Neotropical dry forests and their conservation implications. Science 353:1383–1387. https://doi.org/10.1126/science.aaf5080

    Article  CAS  Google Scholar 

  • Forsman A (2015) Rethinking phenotypic plasticity and its consequences for individuals, populations and species. Heredity 115:276–284. https://doi.org/10.1038/hdy.2014.92

    Article  CAS  PubMed  Google Scholar 

  • Fox J (2005) The R commander: a basic statistics graphical user interfase to R. J Stat Softw 14(9):1–42

    Article  Google Scholar 

  • Fox J (2007) Extending the R Commander by “plugging.” R news 7:46–52

    Google Scholar 

  • Frasier TR (2016) A note on the use of multiple linear regression in molecular ecology. Mol Ecol 16:382–387. https://doi.org/10.1111/1755-0998.12499

    Article  Google Scholar 

  • García MV, Prinz K, Barrandeguy ME, Miretti M, Finkeldey R (2014) A unifying study of phenotypic and molecular genetic variability in natural populations of Anadenanthera colubrina var. cebil from Yungas and Paranaense biogeographic provinces in Argentina. J Genet 93:123–132

    Article  Google Scholar 

  • Gascuel O (1997) Concerning the NJ algorithm and its unweighted version, UNJ. In: Boris, M, McMorris FR, Roberts FS, Rzhetsky A (eds.) Mathematical Hierarchies and Biology. DIMACS workshop, Series in discrete mathematics and theoretical computer science. Bull Soc Amis Sci Poznan, Ser B, Sci Math, 40:149–170. https://doi.org/10.1090/S0002-9947-1950-0038335-x

  • Grivet D, Sork VL, Westfall RD, Davis FW (2008) Conserving the evolutionary potential of California valley oak (Quercus lobata Née): a multivariate genetic approach to conservation planning. Molec Ecol 17:139–156. https://doi.org/10.1111/j.1365-294X.2007.03498.x

    Article  Google Scholar 

  • Hamilton MB (2009) Population Genetics. Wiley-Blackwell, West Sussex, UK, pp 1–422

    Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. https://doi.org/10.1002/joc.1276

    Article  Google Scholar 

  • Hijmans RJ, Guarino L, Cruz M, Rojas E (2001) Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS Pl Genet Resources Newlett 127:15–19

    Google Scholar 

  • Joshi J, Schmid B, Caldeira MC, Dimitrakopoulos PG, Good J, Harris R, Hector A, Huss-Danell K, Jumpponen A, Minns A, Mulder CPHJ, Pereira S, Prinz A, Scherer-Lorenzen M, Siamantziouras ASD, Terry AC, Troumbis AY, Lawton JH (2001) Local adaptation enhances performance of common plant species. Ecol Lett 4:536–544. https://doi.org/10.1046/j.1461-0248.2001.00262.x

    Article  Google Scholar 

  • Justiniano MJ, Fredericksen TS (1998) Ecología y silvicultura de especies menos conocidas: Curupaú—Anadenanthera colubrina. Proyecto BOLFOR, Santa Cruz, Bolivia, pp 1–59

    Google Scholar 

  • Kleinbaum DG, Kupper LL, Nizam A, Muller KE (2008) Applied Regression Analysis and Other Multivariable Methods. (Books/ Cole Cengage Learning). Belmont, USA: Duxbury Press, pp 1–928.

  • Klitgård BB, Lewis GP (2010) Neotropical Leguminosae (Mimosoideae) In: Milliken, W, Klitgård B, Baracat A (Eds) Neotropikey - Interactive key and information resources for flowering plants of the Neotropics. http://www.kew.org/science/tropamerica/neotropikey/families/Leguminosae_(Mimosoideae).htm.

  • Kovach WL (1995) MVSP Plus. Kovach Computing Services, Pentraeth, Wales, pp 1–145

    Google Scholar 

  • Lazrek F, Roussel V, Ronfort J, Cardinet G, Chardon F, Aouani ME, Huguet T (2009) The use of neutral and non-neutral SSRs to analyse the genetic structure of a Tunisian collection of Medicago truncatula lines and to reveal associations with eco-environmental variables. Genetica 135:391–402. https://doi.org/10.1007/s10709-008-9285-3

    Article  CAS  PubMed  Google Scholar 

  • Lefèvre F, Boivin T, Bontemps A, Courbet F, Davi H, Durand-Gillmann M, Fady B, Gauzere J, Gidoin C, Karam MJ, Lalagüe H, Oddou-Muratorio S, Pichot C (2014) Considering evolutionary processes in adaptive forestry. Ann Forest Sci 71:723–739. https://doi.org/10.1007/s13595-013-0272-1

    Article  Google Scholar 

  • Ligier, HD, Matteio HR, Polo HL, Rosso JR (1985) Atlas de suelos de la República Argentina. Tomo II. Buenos Aires, Argentina: Secretaria de Agricultura, Ganadería y Pesca., pp 111–154.

  • LPWG (The Legume Phylogeny Working Group), Azani, N, Azani M, Babineau M, Donovan Bailey C, Banks H, Barbosa AR, Barbosa Pinto R, Boatwright JS, Borges LM, Brown GK, Bruneau A, Candido E, Cardoso D, Chung KF, Clark RP, Conceição A, Crisp M, Cubas P, Delgado-Salinas A, Dexter KG, Doyle JJ, Duminil J, Egan AN, de la Estrella M, Falcão MJ, Filatov DA, Fortuna-Perez AP, Fortunato RH, Gagnon, E, Gasson P, Gastaldello Rando J, Goulart de Azevedo Tozzi AM, Gunn B, Harris D, Haston E, Hawkins JA, Herendeen PS, Hughes CE, Iganci JRV, Javadi F, Kanu SA, Kazempour-Osaloo S, Kite GC, Klitgaard BB, Kochanovski FL, Koenen EJM, Kovar L, Lavin M, le Roux M, Lewis GP, de Lima HC, López-Roberts MC, Mackinder B, Maia VH, Malécot V, Mansano VF, Marazzi B, Mattapha S, Miller JT, Mitsuyuki C, Moura T, Murphy DJ, Nageswara-Rao M, Nevado B, Neves D, Ojeda DI, Pennington RT, Prado DE, Prenner G, Paganucci de Queiroz L, Ramos G, Ranzato Filardi FL, Ribeiro PG, Rico-Arce ML, Sanderson MJ, Santos-Silva J, São-Mateus WMB, Silva MJS, Simon MF, Sinou C, Snak C, de Souza ER, Sprent J, Steele KP, Steier JE, Steeves R, Stirton CH, Tagane S, Torke BM, Toyama H, Trabuco da Cruz D, Vatanparast M, Wieringa JJ, Wink M, Wojciechowski MF, Yahar T, Yi T, Zimmerman E. A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. Taxon 66(1):44–77. https://doi.org/10.12705/661

  • Manel S, Gugerli F, Thuiller W, Alvarez N, Legendre P, Holderegger R, Gielly L, Taberlet P (2012) Broad-scale adaptive genetic variation in alpine plants is driven by temperature and precipitation. Mol Ecol 21:3729–3738. https://doi.org/10.1111/j.1365-294X.2012.05656.x

    Article  PubMed  PubMed Central  Google Scholar 

  • McGaughran A, Morgan K, Sommer RJ (2014) Environmental variables explain genetic structure in a beetle-associated nematode. PLoS One 9:e87317. https://doi.org/10.1371/journal.pone

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mogni VY, Oakley LJ, Prado DE (2015) The distribution of woody legumes in neotropical dry forests: the Pleistocene Arc Theory 20 years on. Edinburgh J Bot 72:35–60. https://doi.org/10.1017/S0960428614000298

    Article  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    Article  CAS  Google Scholar 

  • Neves DM, Dexter KG, Pennington RT, Bueno ML, de Oliveira Filho AT (2015) Environmental and historical controls of floristic composition across the South American Dry Diagonal. J Biogeogr 42(8):1566–1576. https://doi.org/10.1111/jbi.12529

    Article  Google Scholar 

  • Nielsen EA, Hansen MM, Meldrup D (2006) Evidence of microsatellite hitch-hiking selection in Atlantic cod (Gadus morhua L.): implications for inferring population structure in nonmodel organisms. Mol Ecol 15:3219–3322. https://doi.org/10.1111/j.1365-294X.2006.03025.x

    Article  CAS  PubMed  Google Scholar 

  • Oberle B, Schaal BA (2011) Responses to historical climate change identify contemporary threats to diversity in Dodecatheon. Proc Natl Acad Sci USA 108:5655–5660. https://doi.org/10.1073/pnas.1012302108

    Article  PubMed  PubMed Central  Google Scholar 

  • Ooi MKJ, Auld TD, Denham AJ (2009) Climate change and bet-hedging: interactions between increased soil temperatures and seed bank persistence. Glob Change Biol 15:2375–2386. https://doi.org/10.1111/j.1365-2486.2009.01887.x

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  • Pennington RT, Lavin M, Oliveira-Filho A (2009) Woody plants diversity, evolution, and ecology in the tropics: Perspectives from Seasonally Dry Tropical Forests. Annu Rev Ecol Evol Sys 40:437–457

    Article  Google Scholar 

  • Pennington RT, Prado DE, Pendry CA (2000) Neotropical seasonally dry forests and Quaternary vegetation changes. J Biogeogr 27:261–273. https://doi.org/10.1046/j.1365-2699.2000.00397.x

    Article  Google Scholar 

  • Perrier X, Jacquemoud-Collet JP (2006) DARwin software. Genetic improvement and adaptation of Mediterranean and Tropical plants Biomathematics Team, Montpellier, France, pp 1–116

    Google Scholar 

  • Pournosrat R, Kaya S, Shaaf S, Kilian B, Ozkan H (2018) Geographical and environmental determinants of the genetic structure of wild barley in southeastern Anatolia. PLoS One 13:e0192386. https://doi.org/10.1371/journal.pone.0192386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prado D (2000) Seasonally dry forest of tropical South America: from forgotten ecosystems to a new phytogeography unit. Edinburgh J Bot 57:437–461. https://doi.org/10.1017/S096042860000041x

    Article  Google Scholar 

  • Prado DE, Gibbs PE (1993) Patterns of species distributions in the dry seasonal forests of South America. Ann Missouri Bot Gard 80:902–927. https://doi.org/10.2307/2399937

    Article  Google Scholar 

  • Riordan EC, Gugger PF, Ortego J, Smith C, Gaddis K, Thompsonntera P, Sork VL (2016) Association of genetic and phenotypic variability with geography and climate in three southern California oaks. Am J Bot 103:73–85. https://doi.org/10.3732/ajb.1500135

    Article  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The Neighbor-joining method: a new method for reconstructing phylogenetic trees. Molec Biol Evol 4:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  CAS  PubMed  Google Scholar 

  • Santos RM, Oliveira-Filho AT, Eisenlohr PV, Queiroz LP, Cardoso DBOS, Rodal MJN (2012) Identity and relationships of the Arboreal Caatinga among other floristic units of seasonally dry tropical forests (SDTFs) of north-eastern and Central Brazil. Ecol Evol 2:409–428. https://doi.org/10.1002/ece3.91

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi MM, Michalski SG, Chen XY, Durka W (2011) Isolation by elevation: genetic structure at neutral and putatively non-neutral loci in a dominant tree of subtropical foresta Castamopsis eyrei. PloS One 6:e21302. https://doi.org/10.1371/journal.pone.0021302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smouse PE, Williams RC (1982) Multivariate analysis of HLA-disease associations. Biometrics 38:757–768. https://doi.org/10.2307/2530055

    Article  CAS  PubMed  Google Scholar 

  • Spichiger R, Palese R, Chautems A, Ramella L (1995) Origin, affinities and diversity hot spots of the Paraguayan dendrofloras. Candollea 50:515–537

    Google Scholar 

  • Steel RGD, Torrie JH (1980) Bioestadística: Principios y procedimientos. Bogotá, Colombia: Editorial McGraw—Hill Latinoamericana S.A., pp 1–640.

  • TerBraak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179. https://doi.org/10.2307/1938672

    Article  Google Scholar 

  • Tripiana V, Bourgeois M, Verhaegen D, Vigneron P, Bouvet JM (2007) Combining microsatellites, growth, and adaptive traits for managing in situ genetic resources of Eucalyptus urophylla. Can J For Res 37:773–785. https://doi.org/10.1139/X06-260

    Article  Google Scholar 

  • van der Hammen T (1974) The Pleistocene changes of vegetation and climate in tropical South America. J Biogeogr 1:3–26

    Article  Google Scholar 

  • Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116:882–892. https://doi.org/10.1111/j.2007.0030-1299.15559.x

    Article  Google Scholar 

  • Volis S, Ormanbekova D, Yermekbayev K, Song M, Shulgina I (2014) Introduction beyond a species range: a relationship between population origin, adaptive potential and plant performance. Heredity 113:268–276. https://doi.org/10.1038/hdy.2014.25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Altschul S (1964) A taxonomic study of the genus Anadenanthera. Contr Gray Herb 93:1–65. https://www.jstor.org/stable/41764816

  • Westfall RD, Conkle MT (1992) Allozyme markers in breeding zone designation. New Forest 6:279–309. https://doi.org/10.1007/BF00120649

    Article  Google Scholar 

Download references

Acknowledgments

M. V. García wishes to thank the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) for the fellowship within the framework of “Programa de Financiamiento Parcial para Estadías en el Exterior para Investigadores Asistentes”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Victoria García.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding: This work was supported financially by the Agencia Nacional de Promoción Científica y Tecnológica (AGENCIA) undergrant PICT 2011 N°1795 to M. V. García.

The online version is available at http://www.springerlink.com.

Corresponding editor: Zhu Hong.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 78 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García, M.V., Barrandeguy, M.E. & Prinz, K. Contemporary climate influence on variability patterns of Anadenanthera colubrina var. cebil, a key species in seasonally dry tropical forests. J. For. Res. 33, 89–101 (2022). https://doi.org/10.1007/s11676-021-01342-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-021-01342-8

Keywords

Navigation