Skip to main content
Log in

Genotype-environment interaction in Cordia trichotoma (Vell.) Arráb. Ex Steud. progenies in two different soil conditions

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Investment in silvicultural techniques is noticeably lacking, especially in breeding programs for non-conventional wood species. Studying genotype × environment interaction (G × E) is essential to the development of breeding programs. Thus, this study aimed to estimate genetic diversity of and the effects of G × E interaction on two progeny tests of Cordia trichotoma, including the estimation of genetic gain and genetic diversity after selection. For the experiment, 30 progenies of C. trichotoma were tested at two sites with differing soil textures. Diameter at breast height (1.30 m above soil surface, dbh-cm), total height, diameter at 30 cm from the soil, first branch height, and survival were all monitored for four years. Statistical deviance, best linear unbiased estimator, and harmonic mean of relative performance of genetic values (MHPRVG) were all calculated to predict breeding values, estimate genetic parameters, and analyze deviance. All quantified traits varied significantly among progenies by soil type, with greatest variation recorded for genetic variability. Heritability of the progenies led to predictions of genetic gain, ranging from 7.73 to 15.45%, for dbh at four years of age. The calculated decrease in genetic diversity after selection showed that this parameter should be monitored in subsequent breeding cycles. G × E was low for all tests. The best-performing progenies proved most stable and best adapted to the different environmental conditions tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguiar AVD, Vencovsky R, Chaves LJ, Moura MF, Morais LKD (2009) Genetics and expected selection gain for growth traits in Eugenia dysenterica DC. populations. Bragantia 68(3):629–637

    Article  Google Scholar 

  • Berlin M, Jansson G, Karl-Anders H (2015) Genotype by environment interaction in the southern Swedish breeding population of Picea abies using new climatic indices. Scand J For Res 30(2):112–121

    Article  Google Scholar 

  • Brack P, Grings M (2011) Espécies nativas da flora brasileira de valor econômico atual ou potencial: plantas para o futuro - Região Sul. MMA, Brasília, p 936

    Google Scholar 

  • Burdon RD, Li Y (2019) Genotype-environment interaction involving site differences in expression of genetic variation along with genotypic rank changes: simulations of economic significance. Tree Genet Genomes 15(1):2

    Article  Google Scholar 

  • Callister AN (2013) Genetic parameters and correlations between stem size, forking, and flowering in teak (Tectona grandis). Can J For Res 43(12):1145–1150

    Article  Google Scholar 

  • Carbonell SAM, Chiorato AF, Resende MDV, Dias LAS, Beraldo ALA, Perina EF (2007) Estabilidade em cultivares e linhagens de feijoeiro e diferentes ambientes no estado de São Paulo. Bragantia 66(2):193–201

    Article  Google Scholar 

  • Carvalho LPD, Farias FJC, Morello CDL, Teodoro PE (2016) Selection of cotton genotypes for greater length of fibers. Crop Breeding and Applied Biotechnology 16(4):340–347

    Article  Google Scholar 

  • Chinelato FCS, de Moraes CB, Carignato A, Tambarussi EV, Zimback L, Palomino EC, Mori ES (2014) Genetic variability in guapuruvu Schizolobium parahyba progenies. Scientia Agropecuaria 5(2):71–76

    Article  Google Scholar 

  • Cobb JN, Juma RU, Biswas PS, Arbelaez JD, Rutkoski J, Atlin G, Ng EH (2019) Enhancing the rate of genetic gain in public-sector plant breeding programs: lessons from the breeder’s equation. Theor Appl Genet 132(3):627–645

    Article  PubMed  PubMed Central  Google Scholar 

  • Cornelius J (1994) Heritabilities and additive genetic coefficients of variation in forest trees. Can J For Res 24(2):372–379

    Article  Google Scholar 

  • Cruz CD (2013) Genes: a software package for analysis in experimental statistics and quantitative genetics. Acta Sci Agron 35(3):271–276

    Article  Google Scholar 

  • da Costa RB, Martinez DT, Chichorro JF, Bauer MDO, Cezana DP, de Souza TR (2015) Progeny performance at pre-breeding stage of Tectona grandis Lf in Espírito Santo State. Scientia Forestalis 43(105):211–216

    Google Scholar 

  • de Leon N, Jannink JL, Edwards JW, Kaeppler SM (2016) Introduction to a special issue on genotype by environment interaction. Crop Sci 56(5):2081–2089

    Article  Google Scholar 

  • de Resende MD, Ramalho MA, Guilherme SR, de FB Abreu Â, (2015) Multigeneration index in the within-progenies bulk method for breeding of self-pollinated plants. Crop Sci 55(3):1202–1211

    Article  Google Scholar 

  • do Nascimento Senna S, Freitas MLM, Zanatto ACS, Morais E, Zanata M, De Moraes MLT, Sebbenn AM, (2012) Variação e parâmetros genéticos em teste de progênies de polinização livre de Peltophorum dubium (Sprengel) taubert em Luiz Antonio -SP. Scientia Forestalis 40(95):345–352

    Google Scholar 

  • Du Q, Yang X, Xie J, Quan M, Xiao L, Lu W, Tian J, Gong C, Cen J, Li B, Zhang D (2019) Time-specific and pleiotropic quantitative trait loci coordinately modulate stem growth in Populus. Plant Biotechnol J 17(3):608–624

    Article  CAS  PubMed  Google Scholar 

  • Freitas MLM, Sebbenn AM, Morais E, Zanatto ACS, Verardi CK, Pinheiro NA (2006) Parâmetros genéticos em progênies de polinização aberta de Cordia trichotoma (Vell.) ex Steud. Revista Instituto Florestal 18:95–102

    Google Scholar 

  • Gapare WJ, Ivković M, Liepe KJ, Hamann A, Low CB (2015) Drivers of genotype by environment interaction in radiata pine as indicated by multivariate regression trees. For Ecol Manage 353:21–29

    Article  Google Scholar 

  • Gezan SA, de Carvalho MP, Sherrill J (2017) Statistical methods to explore genotype-by-environment interaction for loblolly pine clonal trials. Tree Genet Genomes 13(1):1

    Article  Google Scholar 

  • Goh DK, Bacilieri R, Chaix G, Monteuuis O (2013) Growth variations and heritabilities of teak CSO-derived families and provenances planted in two humid tropical sites. Tree Genet Genomes 9(5):1329–1341

    Article  Google Scholar 

  • Gonçalves PS, Bortoletto N, Martins ALM, Costa RB, Gallo PB (2003) Genotype-environment interaction and phenotypic stability for girth growth and rubber yield of Hevea clones in São Paulo State. Brazil Genetics and Molecular Biology 26(4):441–448

    Article  Google Scholar 

  • Gonçalves GM, Viana AP, Amaral Junior ATD, Resende MDVD (2014) Breeding new sugarcane clones by mixed models under genotype by environmental interaction. Scientia Agricola 71(1):66–71

    Article  Google Scholar 

  • Govindaraj M, Vetriventhan M, Srinivasan M (2015) Importance of genetic diversity assessment in crop plants and its recent advances: An overview of its analytical perspectives. Genetics Research International 2015:1–14

    Article  Google Scholar 

  • Heslot N, Akdemir D, Sorrells ME, Jannink JL (2014) Integrating environmental covariates and crop modeling into the genomic selection framework to predict genotype by environment interactions. Theor Appl Genet 127(2):463–480

    Article  PubMed  Google Scholar 

  • Hill WG, Mulder HA (2010) Genetic analysis of environmental variation. Genetics Research 92(5–6):381–395

    Article  PubMed  Google Scholar 

  • Ibá, Indústria Brasileira de Árvores. Anuário estatístico, 2015 ano base 2014.

  • Kang MS (2002) 15 Genotype–Environment Interaction: Progress and Prospects. Quantitative genetics, genomics, and plant breeding 219.

  • Koo YB, Yeo JK, Woo KS, Kim TS (2007) Selection of superior clones by stability analysis of growth performance in Populus davidiana Dode at age 12. Silvae Genetica 56(1–6):93–101

    Article  Google Scholar 

  • Leonardecz-Neto E, Vencovsky R, Sebbenn AM (2003) Ajuste para a competição entre plantas em teste de progênies e procedências de essências florestais. Scientia Forestalis 63:136–149

    Google Scholar 

  • Li Y, Suontama M, Burdon RD, Dungey HS (2017) Genotype by environment interactions in forest tree breeding: review of methodology and perspectives on research and application. Tree Genet Genomes 13(3):60

    Article  Google Scholar 

  • Maia MCC, Resende MDV, Paiva JR, Cavalcanti JJV, Barros LM (2009) Seleção simultânea para produção, adaptabilidade e estabilidade genotípicas em clones de cajueiro, via modelos mistos. Pesquisa Agropecuária Tropical 39(1):43–50

    Google Scholar 

  • Manfio CE, Motoike SY, Resende MDV, Santos CEM, Sato AY (2012) Avaliação de progênies de macaúba na fase juvenil e estimativas de parâmetros genéticos e diversidade genética. Pesquisa Florestal Brasileira 32(69):63–68

    Article  Google Scholar 

  • McDonald TM, Apiolaza LA (2009) Genotype by environment interaction of Pinus radiata in New Zealand. In: the Second Australasian Forest Genetics Conference, Perth, Australia, 20–22 Abril.

  • Meyer K (2009) Factor-analytic models for genotype x environment type problems and structured covariance matrices. Genet Sel Evol 41:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohammadi R, Farshadfar E, Amri A (2015) Interpreting genotype× environment interactions for grain yield of rainfed durum wheat in Iran. The Crop Journal 3(6):526–535

    Article  Google Scholar 

  • Moiana LD, Vidigal Filho PS, Gonçalves-Vidigal MC, Maleia MPE, Mindo N (2014) Application of mixed models for the assessment genotype and environment interactions in cotton (Gossypium hirsutum) cultivars in Mozambique. Afr J Biotech 13:1985–1991

    Article  Google Scholar 

  • Moreira GR, da Silva DJH, Carneiro P, Picanço MC, Vasconcelos ADA, Pinto CMF (2013) Herança de caracteres de resistência por antixenose de Solanum pennellii à traça-do-tomateiro em cruzamento com “Santa Clara.” Hortic Bras 31(4):574–581

    Article  Google Scholar 

  • Mugasha WA, Bollandsås OM, Eid T (2013) Relationships between diameter and height of trees in natural tropical forest in Tanzania. Southern Forests: a Journal of Forest Science 75(4):221–237

    Article  Google Scholar 

  • Namkoong G, Kang HC, Brouard JS (2012) Tree breeding: principles and strategies: principles and strategies (Vol. 11). Springer Science & Business Media, p 56–73

  • Negreiros JRS, Bergo CL, Migueloni DP, Pereira AM (2013) Divergência genética entre progênies de pupunheira quanto a caracteres de palmito. Pesq Agrop Brasileira 48(5):496–503

    Article  Google Scholar 

  • Pagliarini MK, Kieras WS, Moreira JP, Sousa VA, Shimizu JY, Moraes MLT, Aguiar AV (2016) Adaptability, stability, productivity and genetic parameters in slash pine second-generation families in early age. Silvae Genetica 65(1):71–82

    Article  Google Scholar 

  • Pupin S, de Freitas MLM, Canuto DDO, da Silva AM, Marin ALA, de Moraes MLT (2017) Genetic variability and genetic gains in progenies of Myracrodruon urundeuva Fr. All. in multi-species system. Nativa: Pesquisas Agrárias e Ambientais 5(1):59–65

    Google Scholar 

  • R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Regitano Neto A, Ramos Júnior EA, Gallo PB, Freitas JG, Azzini LE (2013) Comportamento de genótipos de arroz de terras altas no estado de São Paulo. Revista Ciência Agronômica 44:512–519

    Article  Google Scholar 

  • Resende MDV (2002) Genética biométrica e estatística no melhoramento de plantas perenes. EMBRAPA Informação Tecnológica, Brasília, p 975

    Google Scholar 

  • Resende MDV (2005) Melhoramento de essências florestais. BOREM. A. Melhoramento de espécies cultivadas. Viçosa, Editora UFV, pp 717–780

    Google Scholar 

  • Resende MDV (2016) Software Selegen-REML/BLUP: a useful tool for plant breeding. Crop Breeding and Applied Biotechnology 16(4):330–339

    Article  Google Scholar 

  • Resende MDV, Duarte JB (2007) Precisão e controle de qualidade em experimentos de avaliação de cultivares. Pesquisa Agropecuária Tropical 37:182–194

    Google Scholar 

  • Rocha RB, Vieira AH, Gama MD, Rossi LMB (2009) Genetic evaluation of bandarra (Schizolobium amazonicum) provenances by the REML/BLUP methodology. Scientia Forestalis 37(84):351–358

    Google Scholar 

  • Rolim SG, Piña-rodrigues FC, Piotto D, Batista A, Freitas MLM, Junior SB, Zakia MJB, Calmon M (2019) Research Gaps and Priorities in Silviculture of Native Species In Brazil. Working Paper. São Paulo, Brazil: WRI Brasil. Available online at https://wribrasil.org.br/pt/publicacoes

  • Roychowdhury R, Tah J (2011) Evaluation of genetic parameters for agro-metrical traits in carnation genotypes. Afr Crop Sci J 19(3):183–188

    Google Scholar 

  • Sae-Lim P, Gjerde B, Nielsen HM, Mulder H, Kause A (2016) A review of genotype-by-environment interaction and micro-environmental sensitivity in aquaculture species. Rev Aquac 8(4):369–393

    Article  Google Scholar 

  • Santos CHA, Santana GX, Sá Leitão CS, Paula-Silva MN, Almeida-Val VMF (2016) Loss of genetic diversity in farmed populations of Colossoma macropomum estimated by microsatellites. Anim Genet 47(3):373–376

    Article  CAS  PubMed  Google Scholar 

  • Spinelli VM, Dias LAS, Rocha RB, Resende MDV (2015) Estimates of genetic parameters with selection within and between half-sib families of Jatropha curcas L. Ind Crops Prod 69:355–361

    Article  Google Scholar 

  • Storck L, Lúcio ADC, Krause W, Araújo DVD, Silva CA (2014) Scaling the number of plants per plot and number of plots per genotype of yellow passion fruit plants. Acta Sci Agron 36(1):73–78

    Article  Google Scholar 

  • Sumardi S, Kurniawan H, Prastyono P (2016) Genetic parameter estimates for growth traits in an Eucalyptus urophylla s.t. blake progeny test in timor island. Indonesian J Forest Res 3(2):119–127

    Article  Google Scholar 

  • Tambarussi EV, Pereira FB, da Silva PHM, Lee D, Bush D (2018) Are tree breeders properly predicting genetic gain? A case study involving Corymbia species. Euphytica 214(8):150

    Article  Google Scholar 

  • Temesgen T, Keneni G, Sefera T, Jarso M (2015) Yield stability and relationships among stability parameters in faba bean (Vicia faba L.) genotypes. The Crop Journal 3(3):258–268.

  • Torres Filho J, Oliveira CNGDS, Silveira L, Nunes GHDS, Silva AJRD, Silva MFND (2017) Genotype by environment interaction in green cowpea analyzed via mixed models. Revista Caatinga 30(3):687–697

    Article  Google Scholar 

  • Valenzuela CE, Ballesta P, Maldonado C, Baettig R, Arriagada O, Sousa Mafra G, Mora F (2019) Bayesian mapping reveals large-effect pleiotropic QTLs for wood density and slenderness index in 17-year-old trees of Eucalyptus cladocalyx. Forests 10(3):241

    Article  Google Scholar 

  • Wang J, Santiago E, Caballero A (2016) Prediction and estimation of effective population size. Heredity 117(4):193–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei RP, Lindgren D (1996) Effective family number following selection with restrictions. Biometrics Arlington 52:198–208

    Google Scholar 

  • Wricke G, Weber E (2010) Quantitative genetics and selection in plant breeding. Walter de Gruyter, p 195–225.

  • Zakir M (2018) Review on genotype × environment interaction in plant breeding and agronomic stability of crops. J Biol, Agri Healthcare 8:14–21

    Google Scholar 

  • Zhao XY, BianXY LZX, Wang XW, Yang CJ, Liu GF, Yang CP (2014) Genetic stability analysis of introduced Betula pendula, Betula kirghisorum, and Betula pubescens families in saline-alkali soil of northeastern China. Scand J For Res 29(7):639–649

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Vale S.A., Embrapa Foresta Research Company, and the research technicians of the Project Biomas from Embrapa Forestas and FEIS-UNESP (Universidade Estadual Paulista “Júlio de Mesquita Filho” em Ilha Solteira).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanderley dos Santos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding: This work was funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

The online version is available at http://www.springerlink.com.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, W., de Souza, B.M., Zulian, D.F. et al. Genotype-environment interaction in Cordia trichotoma (Vell.) Arráb. Ex Steud. progenies in two different soil conditions. J. For. Res. 33, 309–319 (2022). https://doi.org/10.1007/s11676-021-01337-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-021-01337-5

Keywords

Navigation