Skip to main content
Log in

Molecular characterization and functional analysis of daf-8 in the pinewood nematode, Bursaphelenchus xylophilus

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

A Correction to this article was published on 11 June 2022

This article has been updated

Abstract

Bursaphelenchus xylophilus, causal agent of pine wilt disease, causes extensive damage worldwide. Strategies are needed to inhibit population growth or block the spread of the invasive nematode to control pine wilt disease. The gene daf-8 plays crucial roles in larval development and dauer formation in Caenorhabditis elegans, but little is known about its orthologue in B. xylophilus. In the present molecular characterization and functional analysis of daf-8 in B. xylophilus (Bx-daf-8), RT-qPCR showed that the expression of Bx-daf-8 gradually increased during the embryonic stage, peaked in the second-stage juvenile (J2), then dramatically dropped in the J3, and remained at that low level for the rest of its life. Bx-daf-8-transgenic C. elegans was employed to mimic the spatiotemporal expression of Bx-daf-8, which was expressed close to the pharynx during early embryogenesis and weakly throughout the whole body during late embryogenesis. It was observed in head neurons and tail ganglions throughout all postembryonic stages. B. xylophilus embryos were severely abnormal, and hatching rate decreased sharply after Bx-daf-8 knockdown. daf-16-1 and da-f16-2, downstream genes in the IIS pathway, also dropped sharply after Bx-daf-8 knockdown. We propose that TGFβ may crosstalk with the IIS pathway upstream of Bx-daf-16 and that daf-8 may act as a master regulator of daf-16 in B. xylophilus. However, knockdown of Bx-daf-8 did not lead to constitutive developmental arrest at the dauer larval stage, indicating that dauer entry in B. xylophilus might be controlled by several genes and is more complicated than in C. elegans. Bx-daf-8 alone did not control the dauer entry in B. xylophilus, but it was indispensable for embryogenesis, providing a potential target for suppressing population growth of B. xylophilus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  • Burbea M, Lars D, Jeremy SD, Maria EG, Joshua MK (2002) Ubiquitin and AP180 regulate the abundance of GLR-1 glutamate receptors at postsynaptic elements in Caenorhabditis elegans. Neuron 35(1):107–120

    Article  CAS  Google Scholar 

  • Chen VB, Arendall WB, Jeffrey JH, Daniel AK, Robert MI, Gary JK, Laura WM, Jane SR, David CR (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr 66(1):12–21

    CAS  Google Scholar 

  • Estevez M, Liliana A, Jeffrey LW, Patrice SA, Joan M, Donald LR (1993) The daf-4 gene encodes a bone morphogenetic protein receptor controlling Caenorhabditis elegans dauer larva development. Nature 365(6447):644–649

    Article  CAS  Google Scholar 

  • Futai K (2013) Pine wood nematode, Bursaphelenchus Xylophilus. Ann Rev Phytopathol 51(1):61–83

    Article  CAS  Google Scholar 

  • Georgi LL, Patrice SA, Donald LR (1990) daf-1, a Caenorhabditis elegans gene controlling dauer larva development, encodes a novel receptor protein kinase. Cell 61(4):635–645

    Article  CAS  Google Scholar 

  • Golden JW, Riddle LD (1984) A pheromone-induced developmental switch in Caenorhabditis elegans: temperature-sensitive mutants reveal a wild-type temperature-dependent process. Proc Natl Acad Sci USA 81(3):819–823

    Article  CAS  Google Scholar 

  • Inoue T, James HT (2000) Targets of TGF-β signaling in Caenorhabditis elegans dauer formation. Develop Biol 217(1):192–204

    Article  CAS  Google Scholar 

  • Kikuchi T, Cotton JA, Dalzell JJ, Hasegawa K, Kanzaki N, McVeigh P, Takanashi T, Tsai TJ, Assefa SA, Cock PJA (2011) Genomic insights into the origin of parasitism in the emerging plant pathogen Bursaphelenchus xylophilus. PLoS Pathog 7(9):e1002219

    Article  CAS  Google Scholar 

  • Kimble JE, White JG (1981) On the control of germ cell development in Caenorhabditis elegans. Develop Biol 81(2):208–219

    Article  CAS  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evolut 33(7):1870−1874.

  • Mamiya Y (1983) Pathology of the pine wilt disease caused by Bursaphelenchus xylophilus. Ann Rev Phytopathol 21(4):201–220

    Article  CAS  Google Scholar 

  • Mamiya Y, Kiyohara T (1972) Description of Bursaphelenchus lignicolus n. sp. (Nematoda: Aphelenchoididae) from pine wood and histopathology of nematode-infested trees. Nematologica 18(1):120−124.

  • Massague J, Gomis RR (2006) The logic of TGFbeta signaling. FEBS Lett 580(12):2811–2820

    Article  CAS  Google Scholar 

  • McGehee AM, Benjamin JM, Peter J (2015) The DAF-7/TGF-β signaling pathway regulates abundance of the Caenorhabditis elegans glutamate receptor GLR-1. Mol Cell Neurosci 67:66–74

    Article  CAS  Google Scholar 

  • Narasimhan SD, Kelvin Y, Ankita B, Eun-Soo K, Srivatsan P, Heidi AT, Stuart KK (2011) PDP-1 links the TGF-β and IIS pathways to regulate longevity, development, and metabolism. PLoS Genet 7(4):e1001377

    Article  CAS  Google Scholar 

  • Nielsen H, Konstantinos DT, Søren B, Gunnar H (2019) A brief history of protein sorting prediction. Prot J 38(3):200–216

    Article  CAS  Google Scholar 

  • Okkema PG, Fire A (1994) The Caenorhabditis elegans NK-2 class homeoprotein CEH-22 is involved in combinatorial activation of gene expression in pharyngeal muscle. Development 120(8):2175–2186

    Article  CAS  Google Scholar 

  • Okkema PG, Eunju H, Christina H, Wei C, Andrew F (1997) The Caenorhabditis elegans NK-2 homeobox gene ceh-22 activates pharyngeal muscle gene expression in combination with pha-1 and is required for normal pharyngeal development. Development 124(20):3965–3973

    Article  CAS  Google Scholar 

  • Park D, Annette E, Donald LR (2010) Antagonistic Smad transcription factors control the dauer/non-dauer switch in Caenorhabditis elegans. Development 137(3):477–485

    Article  CAS  Google Scholar 

  • Park D, Karen LJ, Hyojin L, Terrance PS, Stefan T, Donald LR (2012) Repression of a potassium channel by nuclear hormone receptor and TGF-β signaling modulates insulin signaling in Caenorhabditis elegans. PLoS Genet 8(2):e1002519

    Article  CAS  Google Scholar 

  • Riddle DL, Margaret MS, Patrice SA (1981) Interacting genes in nematode dauer larva formation. Nature 290(5808):668–671

    Article  CAS  Google Scholar 

  • Savage-Dunn C, Lisa LM, Cole MZ, Andrew FR, Richard WP (2003) Genetic screen for small body size mutants in Caenorhabditis elegans reveals many TGFβ pathway components. Genesis 35(4):239–247

    Article  CAS  Google Scholar 

  • Schackwitz WS, Inoue T, Thomas JH (1996) Chemosensory neurons function in parallel to mediate a pheromone response in Caenorhabditis elegans. Neuron 17(4):719–728

    Article  CAS  Google Scholar 

  • Schilling SH, Michael BD, Xiao FW (2006) A phosphatase controls the fate of receptor-regulated Smads. Cell 125(5):838–840

    Article  CAS  Google Scholar 

  • Shaw WM, Luo S, Landis J, Ashraf J, Murphy CT (2007) The Caenorhabditis elegans TGF-beta Dauer pathway regulates longevity via insulin signaling. Curr Biol 17(19):1635–1645

    Article  CAS  Google Scholar 

  • Shi YG, Wang YF, Lata J, Yang HJ, Nikola PP (1998) Crystal structure of a Smad MH1 domain bound to DNA: insights on DNA binding in TGF-beta signaling. Cell 94(5):585–594

    Article  CAS  Google Scholar 

  • Tanaka SE, Mehmet D, Yasunobu M, Isheng JT, Ryusei T, Mark B, Yuko T, Kenji F, Natsumi K, Taisei K (2019) Stage-specific transcriptome of Bursaphelenchus xylophilus reveals temporal regulation of effector genes and roles of the dauer-like stages in the lifecycle. Sci Rep 9(1):e6080

    Article  Google Scholar 

  • Tang J, Ma RQ, Zhu NJ, Guo K, Guo YQ, Bai LQ, Yu HS, Hu JF, Zhang XY (2020) Bxy-fuca encoding alpha-L-fucosidase plays crucial roles in development and reproduction of the pathogenic pinewood nematode, Bursaphelenchus Xylophilus. Pest Manag Sci 76(1):205–214

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  • Tomlin KL, Clark SR, Ceri H (2004) Green and red fluorescent protein vectors for use in biofilm studies of the intrinsically resistant Burkholderia cepacia complex. J Microbiol Methods 57(1):95–106

    Article  CAS  Google Scholar 

  • Trent C, Tsuing N, Horvitz HR (1983) Egg-laying defective mutants of the nematode Caenorhabditis elegans. Genetics 104(4):619–647

    Article  CAS  Google Scholar 

  • Vicente CLSL, Yoriko I, Ryoji S, Manuel M, Koichi H (2015) Catalases induction in high virulence pinewood nematode Bursaphelenchus xylophilus under hydrogen peroxide-induced stress. PLoS ONE 10(4):e0123839

    Article  Google Scholar 

  • Vowels JJ, Thomas JH (1992) Genetic analysis of chemosensory control of dauer formation in Caenorhabditis elegans. Genetics 130(1):105–123

    Article  CAS  Google Scholar 

  • Wu JW, Hu M, Chai J, Seoane J, Huse M, Li C, Rigotti DJ, Kyin S, Muir TW, Fairman R (2001) Crystal structure of a phosphorylated Smad2: recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-β signaling. Mol Cell 8(6):1277–1289

    Article  CAS  Google Scholar 

  • Wu YX, Wickham JD, Zhao LL, Sun JH (2019) CO2 drives the pine wood nematode off its insect vector. Curr Biol 29(13):619–620

    Article  Google Scholar 

  • Zhao LL, Zhang XX, Wei YN, Zhou J, Zhang W, Qin PJ, Chinta S, Kong XB, Liu YP, Yu HY, Hu SN, Zou Z, Butcher RA, Sun JH (2016) Ascarosides coordinate the dispersal of a plant-parasitic nematode with the metamorphosis of its vector beetle. Nat Commun 7:12341

    Article  CAS  Google Scholar 

  • Zhou LF, Chen FM, Xie LY, Pan HY, Ye JR (2017) Genetic diversity of pine-parasitic nematodes Bursaphelenchus xylophilus and Bursaphelenchus mucronatus in China. For Pathol 47(4):e12334

    Article  Google Scholar 

  • Zhou LF, Chen FM, Ye JR (2018) Selection of reliable reference genes for RT-qPCR analysis of Bursaphelenchus mucronatus gene expression from different habitats and developmental stages. Front Genet 9:e269

    Article  Google Scholar 

  • Zhou LF, Ji JJ, Zhu NJ, Guo K, Jia T, Bai LQ, Yu H, Hu JF (2021a) Molecular characterization and functional analysis of akt-1 in pinewood nematode, Bursaphelenchus xylophilus. Forest Pathol. https://doi.org/10.1111/efp.12647

    Article  Google Scholar 

  • Zhou LF, Ma XX, Zhu NJ, Zou QC, Guo K, Bai LQ, Yu HS, Hu JF (2021b) The role of mab-3 in spermatogenesis and ontogenesis of pinewood nematode, Bursaphelenchus Xylophilus. Pest Manag Sci 77(1):138–147

    Article  CAS  Google Scholar 

  • Zhu NJ, Bai LQ, Schütz S, Liu BJ, Liu ZY, Zhang XY, Yu HS (2016) Hu JF (2016) Observation and quantification of mating behavior in the pinewood nematode, Bursaphelenchus Xylophilus. J Visual Exp Jove 118:e54842

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Jinghan Wang and Huan Hong contributed equally to this study.

Corresponding authors

Correspondence to Jianren Ye or Jiafu Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding: The work was supported by the National Natural Science Foundation of China (31870633, 31700565, 31670652, 31570638 and 31270688) and National Key Research and Development Plan of China (2017YFD0600102-03).

The online version is available at http://www.springerlink.com

Corresponding editor: Tao Xu

In the Original Publication, the text “Acknowledgements sdfkjds" has been inadvertently appeared in the paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Hong, H., Xie, R. et al. Molecular characterization and functional analysis of daf-8 in the pinewood nematode, Bursaphelenchus xylophilus. J. For. Res. 33, 689–698 (2022). https://doi.org/10.1007/s11676-021-01335-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-021-01335-7

Keywords

Navigation