Skip to main content
Log in

Metabolic diversity and seasonal variation of soil microbial communities in natural forested wetlands

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

This study explores the effects of vegetation and season on soil microorganisms and enzymatic activity of different wetlands in a temperate climate. Microbial carbon metabolism diversity was assessed using community-level physiological profiles (CLPP) with 31 different carbon substrates. CLPP indicated that significant interactions occur during carbon substrate metabolism of the microorganisms. Furthermore, the different types of vegetation present in the wetland ecosystem combined with the seasonal effects to influence microbial carbon metabolism and enzymatic activity. The most significant differences occurred to carbohydrates, carboxylic acids, and amino acids. The Mantel test confirmed positive correlations between soil enzymatic activities and microbial carbon metabolism. Soil microorganisms in Betula ovalifolia and Carex schmidtii wetlands used carbon substrates more efficiently in summer than those in other forested wetlands during other periods. Enzymatic activities also showed a similar trend as microbial carbon metabolism. The results demonstrate that microbial carbon metabolism patterns can be used as biological indicators in wetland ecological alterations due to vegetation type or to seasonal factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allison SD, Vitousek PM (2005) Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biol Biochem 37(5):937–944

    Article  CAS  Google Scholar 

  • Allison VJ, Yermakov Z, Miller RM, Jastrow JD, Matamala R (2007) Using landscape and depth gradients to decouple the impact of correlated environmental variables on soil microbial community composition. Soil Biol Biochem 39(2):505–516

    Article  CAS  Google Scholar 

  • Anderson CJ, Lockaby BG (2011) Forested wetland communities as indicators of tidal influence along the Apalachicola River, Florida, USA. Wetlands 31(5):895–906

    Article  Google Scholar 

  • Andruschkewitsch M, Wachendorf C, Sradnick A, Hensgen F, Joergensen RG, Wachendorf M (2014) Soil substrate utilization pattern and relation of functional evenness of plant groups and soil microbial community in five low mountain NATURA 2000. Plant Soil 383:275–289

    Article  CAS  Google Scholar 

  • Baddam R, Reddy GB, Raczkowski C, Cyrus JS (2016) Activity of soil enzymes in constructed wetlands treated with swine wastewater. Ecol Eng 91:24–30

    Article  Google Scholar 

  • Baldrian P, Šnajdr J, Merhautová V, Dobiášová P, Cajthaml T, Valášková V (2013) Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change. Soil Biol Biochem 56:60–68

    Article  CAS  Google Scholar 

  • Bandick AK, Dick RP (1999) Field management effects on soil enzyme activities. Soil Biol Biochem 31:1471–1479

    Article  CAS  Google Scholar 

  • Banning NC, Lalor BM, Cookson WR, Grigg AH, Murphy DV (2012) Analysis of soil microbial community level physiological profiles in native and post-mining rehabilitation forest: which substrates discriminate? Appl Soil Ecol 56:27–34

    Article  Google Scholar 

  • Barreiro A, Fontúrbel MT, Lombao A, Martín A, Vega JA, Fernández C, Carballas T, Díaz-Raviña M (2015) Using phospholipid fatty acid and community level physiological profiling techniques to characterize soil microbial communities following an experimental fire and different stabilization treatments. CATENA 135:419–429

    Article  CAS  Google Scholar 

  • Bastida F, Barbera GG, Garcia C, Hernandez T (2008) Influence of orientation, vegetation and season on soil microbial and biochemical characteristics under semiarid conditions. Appl Soil Ecol 38(1):62–70

    Article  Google Scholar 

  • Bergamaschi P, Frankenberg C, Meirink JF, Krol M, Dentener F, Wagner T, Platt U, Kaplan JO, Korner S, Heimann M, Dlugokencky EJ, Goede A (2007) Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: 2. Evaluation based on inverse model simulations. J Geophys Res: Atmos 112:02304

    Article  CAS  Google Scholar 

  • Bergstrom DW, Monreal CM, King DJ (1998) Sensitivity of soil enzyme activitiesto conservation practices. Soil Sci Soc Am 62:1286–1295

    Article  CAS  Google Scholar 

  • Bissegger S, Rodriguez M, Brisson J, Weber KP (2014) Catabolic profiles of microbial communities in relation to plant identity and diversity in free-floating plant treatment wetland mesocosms. Ecol Eng 67:190–197

    Article  Google Scholar 

  • Boyce RL, Durtsche RD, Fugal SL (2012) Impact of the invasive shrub Lonicera maackii on stand transpiration and ecosystem hydrology in a wetland forest. Biol Invasions 14(3):671–680

    Article  Google Scholar 

  • Brimecombe MJ, De Leij FA, Lynch JM (2007) Rhizodeposition andmicrobial populations. The rhizosphere, biochemistry and organic substances at the soil-plant interface, 2nd edn. Marcel Dekker, New York, pp 73–140

    Google Scholar 

  • Brockett BFT, Prescott CE, Grayston SJ (2012) Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biol Biochem 44(1):9–20

    Article  CAS  Google Scholar 

  • Cai TJ, Xin GH, Zhang YW, Dai XX, Liu B (2010) Characteristic of soil organic carbon of the Sphagnum spp. wetland in Xiao Hinggan Mountains. Sci Soil Water Conserv 8(5):109–113

    Google Scholar 

  • Cai XQ, Lin ZW, Penttinen P, Li YF, Li YC, Luo Y, Yue T, Jiang PK, Fu WJ (2018) Effects of conversion from a natural evergreen broadleaf forest to a Moso bamboo plantation on the soil nutrient pools, microbial biomass and enzyme activities in a subtropical area. For Ecol Manag 422:161–171

    Article  Google Scholar 

  • Campos A, Hernandez ME, Moreno-Casasola P, Espinosa EC, Robledo A, Mata DI (2011) Soil water retention and carbon pools in tropical forested wetlands and marshes of the Gulf of Mexico. Hydrol Sci J-J Des Sci Hydrol 56(8):1388–1406

    Article  CAS  Google Scholar 

  • Chavarría DN, Verdenelli RA, Muñoz EJ, Conforto C, Restovich SB, Andriulo AE, Meriles JM, Vargas-Gil S (2016) Soil microbial functionality in response to the inclusion of cover crop mixtures in agricultural systems. Span J Agric Res 14(2):e0304

    Article  Google Scholar 

  • Chodak M, Klimek B, Azarbad H, Jazwa M (2015) Functional diversity of soil microbial communities under Scots pine, Norway spruce, silver birch and mixed boreal forests. Pedobiologia: J Soil Ecol 58(2–3):81–88

    Article  Google Scholar 

  • Chodak M, Klimek B, Niklińska M (2016) Composition and activity of soil microbial communities in different types of temperate forests. Biol Fertil Soils 52:1093–1104

    Article  CAS  Google Scholar 

  • Chou YM, Shen FT, Chiang SC, Chang CM (2017) Functional diversity and dominant populations of bacteria in banana plantation soils as influenced by long-term organic and conventional farming. Appl Soil Ecol 110:21–33. https://doi.org/10.1016/j.apsoil.2016.11.002

    Article  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  • Classen AT, Boyle SI, Haskins KE, Overby ST, Hart SC (2003) Community level physiological profiles of bacteria and fungi: Plate type and incubation temperature influences on contrasting soils. FEMS Microbiol Ecol 44:319–328

    Article  PubMed  CAS  Google Scholar 

  • Correa-Araneda FJ, Urrutia J, Soto-Mora Y, Figueroa R, Hauenstein E (2012) Effects of the hydroperiod on the vegetative and community structure of freshwater forested wetlands. Chile J Freshw Ecol 27(3):459–470

    Article  Google Scholar 

  • De Deyn GB, Cornelissen JHC, Bardgett RD (2008) Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol Lett 11(5):516–531

    Article  PubMed  Google Scholar 

  • De Deyn GB, Quirk H, Bardgett RD (2011) Plant species richness, identity and productivity differentially influence key groups of microbes in grassland soils of contrasting fertility. Biol Let 7(1):75–78

    Article  Google Scholar 

  • De Vries FT, Manning P, Tallowin JRB, Mortimer SR, Pilgrim ES, Harrison KA, Hobbs PJ, Quirk H, Shipley B, Cornelissen JHC, Kattge J, Bardgett RD (2012) Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. Ecol Lett 15(11):1230–1239

    Article  PubMed  Google Scholar 

  • Di Paola A, Valentini R, Paparella F (2012) Climate change threatens coexistence within communities of mediterranean forested wetlands. PloS One 7(10):e44727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dick RP, Breakwell DP, Turco RF (1996) Soil enzyme activities and biodiversity measurements and integrative microbial indicators. In: Doran JW, Jones AJ (eds) Methods for assessing soil quality, vol 49. Soil Science Society of America, Madison, WI, pp 247–271

    Google Scholar 

  • Eswaran HE, van den Berg E, Reich P (1993) Organic carbon pools of the world. Soil Sci Soc Am 57:192–194

    Article  Google Scholar 

  • Fan AN, Yang K, Liu CH, Dong Q (2009) Seasonal variations of soil enzyme activities in secondary forest communities in Montane region of eastern Liaoning province. J Northeast For Univ 37(1):52–54, 71.

  • German DP, Weintraub MN, Grandy AS, Lauber CL, Rinkes ZL, Allison SD (2011) Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biol Biochem 43(7):1387–1397

    Article  CAS  Google Scholar 

  • Godin AM, Lidher KK, Whiteside MD, Jones MD (2015) Control of soil phosphatase activities at millimeter scales in a mixed paper birch-Douglas-fir forest: the importance of carbon and nitrogen. Soil Biol Biochem 80:62–69

    Article  CAS  Google Scholar 

  • He B, Wen YG, Yuan X, Liang HW (2002) Studies on soil physical and chemical properties and enzyme activities of different mangrove communities in Yingluo bay of Guangxi. Scientia Silvae Sinicae 38(2):21–26

    CAS  Google Scholar 

  • Helbig M, Chasmer LE, Desai AR, Kljun N, Quinton WL, Sonnentag O (2017) Direct and indirect climate change effects on carbon dioxide fluxes in a thawing boreal forest-wetland landscape. Glob Change Biol 23(8):3231–3248

    Article  Google Scholar 

  • Jefferies RL, Walker NA, Edwards KA, Dainty J (2010) Is the decline of soil microbial biomass in late winter coupled to changes in the physical state of cold soils? Soil Biol Biochem 42(2):129–135

    Article  CAS  Google Scholar 

  • Kader MA, Yeasmin S, Akter M, Sleutel S (2017) Response of hydrolytic enzyme activities and nitrogen mineralization to fertilizer and organic matter application in subtropical paddy soils. Eur J Soil Biol 80:27–34

    Article  CAS  Google Scholar 

  • Klimek B, Chodak M, Jazwa M, Solak A, Tarasek A, Niklinska M (2016) The relationship between soil bacteria substrate utilisation patterns and the vegetation structure in temperate forests. Eur J For Res 135(1):179–189

    Article  Google Scholar 

  • Krauss KW, Whitbeck JL (2012) Soil greenhouse gas fluxes during wetland forest retreat along the Lower Savannah River, Georgia (USA). Wetlands 32(1):73–81

    Article  Google Scholar 

  • Kumar U, Shahid M, Tripathi R, Mohanty S, Kumar A, Bhattacharyya P, Lal B, Gautam P, Raja R, Panda BB, Jambhulkar NN, Shukla AK, Nayak AK (2017) Variation of functional diversity of soil microbial community in sub-humid tropical rice-rice cropping system under long-term organic and inorganic fertilization. Ecol Ind 73:536–543

    Article  CAS  Google Scholar 

  • Legay N, Grassein F, Binet MN, Arnoldi C, Personeni E, Perigon S, Poly F, Pommier T, Puissant J, Clement JC, Lavorel S, Mouhamadou B (2016) Plant species identities and fertilization influence on arbuscular mycorrhizal fungal colonisation and soil bacterial activities. Appl Soil Ecol 98:132–139

    Article  Google Scholar 

  • Lemanceau P, Maron PA, Mazurier S, Mougel C, Pivato B, Plassart P, Ranjard L, Revellin C, Tardy V, Wipf D (2015) Understanding and managing soil biodiversity: a major challenge in agroecology. Agron Sustain Dev 35(1):67–81

    Article  CAS  Google Scholar 

  • Li X, Zhang HH, Yue BB, Jin WW, Xu N, Zhu WX, Sun GY (2012) Effects of mulberry-soybean intercropping on carbon-metabolic microbial diversity in salinealkaline soil. Chin J Appl Ecol 23(7):1825–1831

    CAS  Google Scholar 

  • Lorenz K, Lal R (2005) The depth distribution of soil organic carbon in relation to land use and management and the potential of carbon sequestration in subsoil horizons. Adv Agron 88:35–66

    Article  CAS  Google Scholar 

  • Luna L, Pastorelli R, Bastida F, Hernández T (2016) The combination of quarry restoration strategies in semiarid climate induces different responses in biochemical and microbiological soil properties. Appl Soil Ecol 107:33–47

    Article  Google Scholar 

  • Maharjan M, Sanaullah M, Razavi BS, Kuzyakov Y (2017) Effect of land use and management practices on microbial biomass and enzyme activities in subtropical top-and sub-soils. Appl Soil Ecol 113:22–28

    Article  Google Scholar 

  • Maltby E, Immirzi P (1993) Carbon dynamics in peatlands and other wetland soils regional and global perspectives. Chemosphere 27:999–1023

    Article  CAS  Google Scholar 

  • Mayor ÁG, Goirán SB, Vallejo VR, Bautista S (2016) Variation in soil enzyme activity as a function of vegetation amount, type, and spatial structure in fire-prone Mediterranean shrublands. Sci Total Environ 573:1209–1216

    Article  PubMed  CAS  Google Scholar 

  • Michele I, Elisa N, Rosaria D, Tiziana D, Primo P, Luigi N, Luca R, Simona C, Antonietta F (2017) Effects of olive pomace amendment on soil enzyme activities. Appl Soil Ecol 119:242–249

    Article  Google Scholar 

  • Moghimian N, Hosseini SM, Kooch Y, Darki BZ (2017) Impacts of changes in land use/cover on soil microbial and enzyme activities. CATENA 157:407–414

    Article  CAS  Google Scholar 

  • Moseman-Valtierra SM, Armaiz-Nolla K, Levin LA (2010) Wetland response to sedimentation and nitrogen loading: diversification and inhibition of nitrogen-fixing microbes. Ecol Appl 20(6):1556–1568

    Article  PubMed  CAS  Google Scholar 

  • Mu C (2003) Succession of Larix olgensis and Betula platyphlla-marsh ecotone communities in Changbai Mountain. J Appl Ecol 14(11):1813–1819

    Google Scholar 

  • Mu CC, Wang B, Lu HC, Bao X, Cui W (2013) Carbon storage of natural wetland ecosystem in Daxing’anling of China. Acta Ecol Sin 33:4956–4965

    Article  Google Scholar 

  • Nayak DR, Babu YJ, Adhya TK (2007) Long-term application of compost influences microbial biomass and enzyme activities in a tropical Aeric Endoaquept planted to rice under flooded condition. Soil Biol Biochem 39:1897–1906

    Article  CAS  Google Scholar 

  • Pan FJ, Zhang W, Liang YM, Liu SJ, Wang KL (2018) Increased associated effects of topography and litter and soil nutrients on soil enzyme activities and microbial biomass along vegetation successions in karst ecosystem, southwestern China. Environ Sci Pollut Res 2:1–12

    Google Scholar 

  • Pierce ML, Ward JE, Dobbs FC (2014) False positives in Biolog EcoPlates (TM) and MT2 MicroPlates (TM) caused by calcium. J Microbiol Methods 97:20–24

    Article  PubMed  CAS  Google Scholar 

  • Pietrzykowski M, Daniels WL, Koropchak SC (2015) Microtopographic effects on growth of young bald cypress (Taxodium distichum L.) in a created freshwater forested wetland in southeastern Virginia. Ecol Eng 83:135–143

    Article  Google Scholar 

  • Prasse CE, Baldwin AH, Yarwood SA (2015) Site history and edaphic features override the influence of plant species on microbial communities in restored tidal freshwater wetlands. Appl Environ Microbiol 81:3482–3491

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qian X, Gu J, Sun W, Li YD, Fu QX, Wang XJ, Gao H (2014) Changes in the soil nutrient levels, enzyme activities, microbial community function, and structure during apple orchard maturation. Appl Soil Ecol 77:18–25

    Article  Google Scholar 

  • Rogers BF, Tate RL III (2001) Temporal analysis of the soil microbial community along a toposequence in Pineland soils. Soil Biol Biochem 33(10):1389–1401

    Article  CAS  Google Scholar 

  • Salomo S, Munch C, Roske I (2009) Evaluation of the metabolic diversity of microbial communities in four different filter layers of a constructed wetland with vertical flow by Biolog (TM) analysis. Water Res 43(18):4569–4578

    Article  PubMed  CAS  Google Scholar 

  • Sardans J, Peñuelas J, Estiarte M (2006) Warming and drought alter soil phosphatase activity and soil P availability in a Mediterranean shrubland. Plant Soil 289:227–238

    Article  CAS  Google Scholar 

  • Sharma S, Szele Z, Schilling R, Munch JC, Schloter M (2006) Influence of freeze-thaw stress on the structure and function of microbial communities and denitrifying populations in soil. Appl Environ Microbiol 72(3):2148–2154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siles JA, Cajthaml T, Minerbi S, Margesin R (2016) Effect of altitude and season on microbial activity, abundance and community structure in Alpine forest soils. FEMS Microbiol Ecol 92:fiw008

    Article  PubMed  CAS  Google Scholar 

  • Sims A, Zhang YY, Galaraj S, Brown PB, Hu ZQ (2013) Toward the development of microbial indicators for wetland assessment. Water Res 47:1711–1725

    Article  PubMed  CAS  Google Scholar 

  • Sinsabaugh RL, Lauber CL, Weintraub MN, Ahmed B, Allison SD, Crenshaw C, Contosta AR, Cusack D, Frey S, Gallo ME, Gartner TB, Hobbie SE, Holland K, Keeler BL, Powers JS, Stursova M, Takacs-Vesbach C, Waldrop MP, Wallenstein MD, Zak DR, Zeglin LH (2008) Stoichiometry of soil enzyme activity at global scale. Ecol Lett 11(11):1252–1264

    Article  PubMed  Google Scholar 

  • Stark S, Mannisto MK, Eskelinen A (2014) Nutrient availability and pH jointly constrain microbial extracellular enzyme activities in nutrient-poor tundra soils. Plant Soil 383(1–2):373–385

    Article  CAS  Google Scholar 

  • Steinweg JM, Dukes J, Wallenstein M (2012) Modeling the effects of temperature and moisture on soil enzyme activity: Linking laboratory assays to continuous field data. Soil Biol Biochem 55:85–92

    Article  CAS  Google Scholar 

  • Sun XX, Mu CC, Song CC, Wu YX (2011) Effects of cutting on methane flux from forested swamps in Xiaoxing’an Mountains, Northeast China. J Soil Sci 42:190–194

    CAS  Google Scholar 

  • Trettin CC, Jurgensen MF (2003) Carbon cycling in wetland forest soils. In: Kimble J, Birdsie R, Lal R (eds) The potential of US forest soils to sequester carbon and mitigate the greenhouse effect. CRC Press, Boca Raton, FL, pp 311–331

    Google Scholar 

  • Vanhala P (2002) Seasonal variation in the soil respiration rate in coniferous forest soils. Soil Biol Biochem 34(9):1375–1379

    Article  CAS  Google Scholar 

  • Wang X, Chen C, Wang JL (2016) Bioremediation of cesium-contaminated soil by sorghum bicolor and soil microbial community analysis. Geomicrobiol J 33(3–4):216–221

    Article  CAS  Google Scholar 

  • Ward BB (2005) Molecular approaches to marine microbial cology and the marine nitrogen cycle. Annu Rev Earth Planet Sci 33:301–333

    Article  CAS  Google Scholar 

  • Watson RT, Noble LR, Bolin B, Ravindranath NH, Verardo DJ, Dokken DJ (2000) IPCC special report: land use, land-use change, and forestry. Cambridge University Press, Cambridge

    Google Scholar 

  • Watts AC, Kobziar LN (2015) Hydrology and fire regulate edge influence on microclimate in wetland forest patches. Freshw Sci 34(4):1383–1393

    Article  Google Scholar 

  • Whittaker RH, Likens GE (1973) Primary production, the biosphere and man. Hum Ecol 1:357–369

    Article  Google Scholar 

  • Wittebolle L, Marzorati M, Clement L, Balloi A, Daffonchio D, Heylen K, De Vos P, Versraete W, Boon N (2009) Initial community evenness favors functionality under selective stress. Nature 458:623–626

    Article  PubMed  CAS  Google Scholar 

  • Wollenberg ALVD (1977) Redundancy analysis an alternative for canonical correlation analysis. Psychometrika 42(2):207–219

    Article  Google Scholar 

  • Xie XF, Pu LJ, Wang QQ, Zhu M, Xu Y, Zhang M (2017) Response of soil physicochemical properties and enzyme activities to long-term reclamation of coastal saline soil, Eastern China. Sci Total Environ 607:1419–1427

    Article  PubMed  CAS  Google Scholar 

  • Yang WJ, Cheng HG, Hao FH, Ouyang W, Liu SQ, Lin CY (2012) The influence of land-use change on the forms of phosphorus in soil profiles from the Sanjiang Plain of China. Geoderma 189:207–214

    Article  CAS  Google Scholar 

  • Yin R, Deng H, Wang HL, Zhang B (2014) Vegetation type affects soil enzyme activities and microbial functional diversity following re-vegetation of a severely eroded red soil in sub-tropical China. CATENA 115:96–103

    Article  Google Scholar 

  • Yu Y, Wang H, Liu J, Wang Q, Shen TL, Guo WH, Wang RQ (2012) Shifts in microbial community function and structure along the successional gradient of coastal wetlands in Yellow River Estuary. Eur J Soil Biol 49:12–21

    Article  Google Scholar 

  • Yuan L, Zhao YS, Nie YZ (2006) Spatial distribution pattern of community biomass in the forest-wetland interlaced zone of Daxing’an Mountains. J Northeast For Univ 34:11–14

    Google Scholar 

  • Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterization of microbial communities in soil: a review. Biol Fertil Soils 29:111–129

    Article  CAS  Google Scholar 

  • Zeng J, Liu XJ, Song L, Lin XG, Zhang HY, Shen CC, Chu HY (2016) Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition. Soil Biol Biochem 92:41–49

    Article  CAS  Google Scholar 

  • Zhang C, Liu GB, Xue S, Wang GL, Wang J, Song ZL (2018a) Effects of rhizosphere interactions of grass interspecies on the soil microbial properties during the natural succession in the Loess Plateau. Eur J Soil Biol 85:79–88

    Article  CAS  Google Scholar 

  • Zhang L, Wang A, Yang WQ, Xu ZF, Wu FZ, Tan B, Liu Y, Chen LH (2017) Soil microbial abundance and community structure vary with altitude and season in the coniferous forests, China. J Soils Sediments 17(9):2318–2328

    Article  CAS  Google Scholar 

  • Zhang WJ, Li RR, Ai XY, Chen J, Xu WN, Li W, Ai YW (2018b) Enzyme activity and microbial biomass availability in artificial soils on rock-cut slopes restored with outside soil spray seeding (OSSS): Influence of topography and season. J Environ Manag 211:287–295

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangyu Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding: The work was supported by the National Natural Science Foundation of China (No. 31500508), the Fundamental Research Funds for the Central Universities (No. 2572020BD02), and Natural Science Foundation of Heilongjiang Province (No. LH2020C041).

The online version is available at http://www.springerlink.com

Corresponding editor: Tao Xu

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 325 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Chi, Q., Sui, X. et al. Metabolic diversity and seasonal variation of soil microbial communities in natural forested wetlands. J. For. Res. 32, 2619–2631 (2021). https://doi.org/10.1007/s11676-021-01326-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-021-01326-8

Keywords

Navigation