Skip to main content
Log in

Overexpression of the ThTPS gene enhanced salt and osmotic stress tolerance in Tamarix hispida

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Trehalose is a non-reducing disaccharide with high stability and strong water absorption properties that can improve the resistance of organisms to various abiotic stresses. Trehalose-6-phosphate synthase (TPS) plays important roles in trehalose metabolism and signaling. In this study, the full-length cDNA of ThTPS was cloned from Tamarix hispida Willd. A phylogenetic tree including ThTPS and 11 AtTPS genes from Arabidopsis indicated that the ThTPS protein had a close evolutionary relationship with AtTPS7. However, the function of AtTPS7 has not been determined. To analyze the abiotic stress tolerance function of ThTPS, the expression of ThTPS in T. hispida under salt and drought stress and JA, ABA and GA3 hormone stimulation was monitored by qRT-PCR. The results show that ThTPS expression was clearly induced by all five of these treatments at one or more times, and salt stress caused particularly strong induction of ThTPS in the roots of T. hispida. The ThTPS gene was transiently overexpressed in T. hispida. Both physiological indexes and staining results showed that ThTPS gene overexpression increased salt and osmotic stress tolerance in T. hispida. Overall, the ThTPS gene can respond to abiotic stresses such as salt and drought, and its overexpression can significantly improve salt and osmotic tolerance. These findings establish a foundation to better understand the responses of TPS genes to abiotic stress in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alicandri E, Paolacci AR, Osadolor S, Sorgonà A, Badiani M, Ciaffi M (2020) On the evolution and functional diversity of Terpene Synthases in the Pinus species: a review. J Molecular Evol 88:253–283

    Article  CAS  Google Scholar 

  • Andre MA, Enrique V, Susana SA, Leyman B, Van Dijck P, Alfaro-Cardoso L, Fevereiro PS, Torne JM, Santos DM (2005) Transformation of tobacco with an Arabidopsis thaliana gene involved in trehalose biosynthesis increases tolerance to several abiotic stresses. Euphytica 146:165–176

    Article  CAS  Google Scholar 

  • Avonce N, Mendoza-Vargas A, Morett E, Iturriaga G (2006) Insights on the evolution of trehalose biosynthesis. BMC Evol Biol 6:109–123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baena-Gonzalez E, Rolland F, Thevelein JM, Sheen J (2007) A central integrator of transcription networks in plant stress and energy signaling. Nature 448:938–942

    Article  CAS  PubMed  Google Scholar 

  • Bansal R, Mian MA, Mittapalli O, Michel AP (2013) Molecular characterization and expression analysis of soluble trehalase gene in Aphis glycines, a migratory pest of soybean. B Entomol Res 103:286–295

    Article  CAS  Google Scholar 

  • Brenner WG, Romanov GA, Kollmer I, Burkle L, Schmulling T (2005) Immediate-early and delayed cytokinin response genes of Arabidopsis thaliana identified by genome-wide expression profiling reveal novel cytokinin-sensitive processes and suggest cytokinin action through transcriptional cascades. Plant J 44:314–333

    Article  CAS  PubMed  Google Scholar 

  • Brodmann D, Schuller A, Ludwig-Muller J, Aeschbacher RA, Wiemken A, Boller T, Wingler A (2002) Induction of trehalase in Arabidopsis plants infected with the trehalose-producing pathogen Plasmodiophora brassicae. Mol Plant Microbe In 15:693–700

    Article  CAS  Google Scholar 

  • Chary SN, Hicks GR, Choi YG, Carter D, Raikhel NV (2008) Trehalose-6-phosphate synthase/phosphatase regulates cell shape and plant architecture in Arabidopsis. Plant Physiol 146:97–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contento AL, Kim SJ, Bassham DC (2004) Transcriptome profiling of the response of Arabidopsis suspension culture cells to Suc starvation. Plant Physiol 135:2330–2347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crowe JH, Crowe LM, Chapman D (1984) Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 223(4637):701–703

    Article  CAS  PubMed  Google Scholar 

  • Drennan PM, Smith MT, Goldsworth D, Staden JV (1999) The occurrence of trehalose in the leaves of the desiccation-tolerant angiosperm myrothamnus flabellifolius welw. J Plant Physiol 142(2):493–496

    Google Scholar 

  • Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13(4):17–27

    Article  Google Scholar 

  • Foster AJ, Jenkinson JM, Talbot NJ (2003) Trehalose synthesis and metabolism are required at different stages of plant infection by Magnaporthe grisea. Embo J 22(2):225–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. PNAS 99(25):15898–15903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goddijn OJM, Dun KV (2006) Trehalose metabolism in plants. Trends Plant Sci 4(8):315–319

    Article  Google Scholar 

  • Govind SR, Jogaiah S, Abdelrahman M, Shetty HS, Tran L-SP (2016) Exogenous trehalose treatment enhances the activities of defense-related enzymes and triggers resistance against downy mildew disease of pearl millet. Front Plant Sci 7:1–13

    Article  Google Scholar 

  • Henry C, Bledsoe SW, Griffiths CA, Kollman A, Paul MJ, Sakr S, Lagrimini LM (2015) Differential role for trehalose metabolism in salt-stressed maize. Plant Physiol 169:1072–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hottiger T, Virgilio CD, Hall MN, Boller T, Wiemken A (1994) The role of trehalose synthesis for the acquisition of thermotolerance in yeast II. Physiological concentrations of trehalose increase the thermal stability of proteins in vitro. Eur J Biochem 219:187–193

    Article  CAS  PubMed  Google Scholar 

  • Huang KF, Wen CH, Lee YR, Chu FH (2019) Cloning and characterization of terpene synthase genes from Taiwan cherry. Tree Genet Genomes 15:1–15

    Article  Google Scholar 

  • Jang IC, Oh SJ, Seo JS, Choi WB, Song SI, Kim CH, Kim YS, Seo HS, Choi YD, Nahm BH, Kim JK (2003) Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol 131:516–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin TT, Gao YL, He KL, Ge F (2018) Expression profiles of the trehalose-6-phosphate synthase gene associated with thermal stress in Ostrinia furnacalis (Lepidoptera: Crambidae). J Insect Sci 18(1):1–10

    Article  CAS  Google Scholar 

  • Kolbe A, Tiessen A, Schluepmann H, Paul M, Ulrich S, Geigenberger P (2005) Trehalose 6-phosphate regulates starch synthesis via posttranslational redox activation of ADP-glucose pyrophosphorylase. PNAS 102(31):11118–11123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laere AV (1989) Trehalose, reserve and/or stress metabolite? FEMS Microbiol Lett 63(1):201–209

    Article  Google Scholar 

  • Li HW, Zang BS, Deng XW, Wang XP (2011) Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta 234:1007–1018

    Article  CAS  PubMed  Google Scholar 

  • Liang Z, Ma DQ, Tang L, Hong YG, Luo AL, Dai XY (1997) Expression of the spinach betaine dehydedehydrogenase (BADH) geneintrans-genic tobacco plants. Chin J Biotechnol 13:153–159

    CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔ(CT) method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Mu M, Lu XK, Wang JJ, Wang DL, Yin ZJ, Wang S, Fan WL, Ye WW (2016) Genome-wide Identification and analysis of the stress-resistance function of the TPS (Trehalose-6-Phosphate Synthase) gene family in cotton. BMC Genet 17:54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Osuna D, Usadel B, Morcuende R, Gibon Y, Blasing OE, Hohne M, Gunter M, Kamlage B, Trethewey R, Scheible W-R, Stitt M (2007) Temporal responses of transcripts, enzyme activities and metabolites after adding sucrose to carbon deprived Arabidopsis seedlings. Plant J 49:463–491

    Article  CAS  PubMed  Google Scholar 

  • Paul MJ, Primavesi LF, Jhurreea D, Zhang Y (2008) Trehalose metabolism and signaling. Annu Rev Plant Biol 59:417–441

    Article  CAS  PubMed  Google Scholar 

  • Reignault P, Cogan A, Muchembled J, Lounes-Hadj Sahraoui A, Durand R, Sancholle M (2001) Trehalose induces resistance to powdery mildew in wheat. New Phytol 149:519–529

    Article  CAS  PubMed  Google Scholar 

  • Reshkin SJ, Cassano G, Womersley C, Ahearn G (1988) Preservation of glucose transport and enzyme activity in fish intestinal brush border and basolateral membrane vesicles. J Exp Biol 140:123–135

    Article  CAS  Google Scholar 

  • Ritonga FN, Chen S (2020) Physiological and molecular mechanism involved in cold stress tolerance in plants. Plants 9(5):1–13

    Article  CAS  Google Scholar 

  • Satoh-Nagasawa N, Nagasawa N, Malcomber S, Sakai H, Jackson D (2006) A trehalose metabolic enzyme controls inflorescence architecture in maize. Nature 441:227–230

    Article  CAS  PubMed  Google Scholar 

  • Scheible WR, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi MK, Stitt M (2004) Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol 136:2483–2499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schluepmann H, Berke L, Sanchez-Perez GF (2012) Metabolism control over growth: a case for trehalose-6-phosphate in plants. J Exp Biol 63(9):3379–3390

    CAS  Google Scholar 

  • Schluepmann H, Paul M (2009) Trehalose metabolites in Arabidopsis-elusive, active and central. The Arabidopsis book/American Society of Plant Biologists.

  • Stiller I, Dulai S, Kondrak M, Tarnai R, Szabo L, Toldi O, Banfalvi Z (2008) Effects of drought on water content and photosynthetic parameters in potato plants expressing the trehalose-6-phosphate synthase gene of Saccharomyces cerevisiae. Planta 227(2):299–308

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Bajad S, Shuman J, Shulaev V, Mittler R (2008) The transcriptional co-activator MBF1c is a key regulator of thermotolerance in Arabidopsis thaliana. J Biol Chem 283:9269–9275

    Article  CAS  PubMed  Google Scholar 

  • Tang B, Wang S, Wang SG, Wang HJ, Zhang JY, Cui SY (2018) Invertebrate trehalose-6-phosphate synthase gene: genetic architecture, biochemistry, physiological function, and potential applications. Front Physiol 9(30):1–13

    Google Scholar 

  • Usadel B, Blasing OE, Gibon Y, Poree F, Hohne M, Gunter M, Trethewey R, Kamlage B, Poorter H, Stitt M (2008) Multilevel genomic analysis of the response of transcripts, enzyme activities and metabolites in Arabidopsis rosettes to a progressive decrease of temperature in the non-freezing range. Plant Cell Environ 31:518–547

    Article  CAS  PubMed  Google Scholar 

  • Van Houtte H, Lopez-Galvis L, Vandesteene L, Beeckman T, Van Dijck P (2013) Redundant and non-redundant roles of the trehalose-6-phosphate phosphatases in leave growth, root hair specification and energy-responses in Arabidopsis. Plant Signal Behav 8(3):1–5

    Google Scholar 

  • Wahl V, Ponnu J, Schlereth A, Arrivault S, Langenecker T, Franke A, Feil R, Lunn JE, Stitt M, Schmid M (2013) Regulation of flowering by trehalose-6- phosphate signaling in Arabidopsis thaliana. Science 339:704–707

    Article  CAS  PubMed  Google Scholar 

  • Wang RC, Okamoto M, Xing XJ, Crawford NM (2003) Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. Plant Physiol 132:556–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XL, Du Y, Yu DQ (2019) Trehalose phosphate synthase 5-dependent trehalose metabolism modulates basal defense responses in Arabidopsis thalianaFA. JIPB 61(4):509–527

    Article  CAS  PubMed  Google Scholar 

  • Wiemken A (1992) Trehalose in yeast, stress protectant rather than reserve carbohydrote. Anton Leeuw Int J G 58(3):209–217

    Article  Google Scholar 

  • Xie L, Wang ZX, Huang B (2014) Genome-wide identification classification and expression of TPS family genes in soybean. Chin J of Oil Crop Sci 36(2):160–167

    Google Scholar 

  • Xu YC, Wang YJ, Mattson N, Yang L, Jin QJ (2017) Genome-wide analysis of the Solanum tuberosum (potato) trehalose-6-phosphate synthase (TPS) gene family: evolution and differential expression during development and stress. BMC Genomics 18:926

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yellisetty V, Reddy LA, Mandapaka M (2015) In planta transformation of sorghum (Sorghum bicolor (L.) Moench) using TPS1 gene for enhancing tolerance to abiotic stresses. J Genet 94(3):425−434.

    CAS  Google Scholar 

  • Yeo ET, Kwon HB, Han SE, Lee JT, Ryu JC, Byun M-O (2000) Genetic engineering of drought resistant potato plants by introduction of the tehalose-6-phosphontes synthase (TPS1) gene from Saccharomyces cerevisiae. Mol Cells 10(3):263–268

    CAS  PubMed  Google Scholar 

  • Zhang SZ, Yang BP, Feng CL, Chen RK, Luo JP, Cai WW, Liu FH (2006) Expression of the Grifola frondosa trehalose synthase gene and improvement of drought-tolerance in sugarcane (Saccharum officinarum L.). J Integr Plant Biol 48(4):453–459.

    Article  CAS  Google Scholar 

  • Zhang SZ, Yang BP, Feng CL, Tang HL (2005) Genetic transformation of tobacco with the trehalose synthase gene from Grifola frondosa Fr. enhances the resistance to drought and salt in tobacco. J Integr Plant Biol 47(5):579–587.

    Article  CAS  Google Scholar 

  • Zhang TQ, Zhao YL, Wang YC, Liu ZY, Gao CQ (2018) Comprehensive Analysis of MYB Gene Family and Their Expressions Under Abiotic Stresses and Hormone Treatments in Tamarix hispida. Front Plant Sci 9:1–13

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

WPL carried out all the experiments and data analysis. WPL and GCQ conceived the project, designed the experiments and drafted the manuscript. GCQ supervised the analysis and critically revised the manuscript. LXJ and LJX provided help during the experimental process. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Caiqiu Gao.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding: This work was supported by the Province in Heilongjiang Outstanding Youth Science Fund (JC2017004), the National Natural Science Foundation of China (No. 31370676) and Heilongjiang Touyan Innovation Team Program (Tree Genetics and Breeding Innovation Team).

The online version is available at http://www.springerlink.com.

Corresponding editor: Yu Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Lei, X., Lü, J. et al. Overexpression of the ThTPS gene enhanced salt and osmotic stress tolerance in Tamarix hispida. J. For. Res. 33, 299–308 (2022). https://doi.org/10.1007/s11676-020-01224-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-020-01224-5

Keywords

Navigation