Skip to main content
Log in

Changes in carbon stocks of soil and forest floor in black pine plantations in Turkey

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

The objectives of this study were: (1) to determine carbon stock changes in the soil and forest floor of black pine (Pinus nigra subsp. pallasiana) plantations in Turkey; (2) to determine the effects of thinning on annual carbon accumulation in both; and, (3) to investigate relationships between annual carbon storage in soil and forest floor and stand characteristics of black pine. Samples were taken in 90 plots from stands at the pole (dbh = 11.0–19.9 cm) and sawlog (dbh = 20.0–35.9 cm) stages. Carbon analyses of soil and forest floor samples showed that in unthinned plantations significant organic carbon was sequestered an average of 1.47 Mg ha−1 a−1 in the soil and 0.20 Mg ha−1 a−1 in the forest floor. Organic carbon sequestered annually in the soil was significantly lower in thinned than in unthinned stands, while differences in the forest floor were insignificant. There were positive correlations between carbon sequestered in the soil and stand age, average DBH, mean stand height, basal area, and site index. Carbon sequestered the forest floor increased with basal area. As a result, carbon sequestered in the soil should not be ignored in greenhouse gas inventories because carbon stored belowground was approximately 70% of the aboveground pool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aertsen W, Kınt V, Orshoven J, Özkan K, Muys B (2010) Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests. Ecol Model 221:1119–1130. https://doi.org/10.1016/j.ecolmodel.2010.01.007

    Article  Google Scholar 

  • Arora G, Chaturvedi S, Kaushal R, Nain A, Tewari S, Alam NM, Chaturvedi OP (2014) Growth, biomass, carbon stocks, and sequestration in an age series of Populus deltoides plantations in Taria region of central Himalaya. Turk J Agric For 38:550–560. https://doi.org/10.3906/tar-1307-94

    Article  CAS  Google Scholar 

  • Bárcena TG, Kiaer LP, Vesterdal L, Stefánsdóttır HM, Gundersen P, Sigurdsson BD (2014) Soil carbon stock change following afforestation in Northern Europe: a meta-analysis. Glob Change Biol 20(8):2393–2405. https://doi.org/10.1111/gcb.12576

    Article  Google Scholar 

  • Berg B, McClaugherty C (2003) Plant litter decomposition, humus formation, carbon sequestration. Springer, Berlin, p 286

    Google Scholar 

  • Berg B, Gundersen P, Akselsson C, Johansson MB, Nilsson A, Vesterdal L (2007) Carbon sequestration rates in Swedish forest soils—a comparison of three approaches. Silva Fennica 41(3):541–558

    Article  Google Scholar 

  • Berger TW, Neubauer C, Glatzel G (2002) Factors controlling soil carbon and nitrogen stores in pure stands of Norway spruce (Picea abies) and mixed species stands in Austria. For Ecol Manag 159:3–14. https://doi.org/10.1016/S0378-1127(01)00705-8

    Article  Google Scholar 

  • Black K, Byrne KA, Mencuccini M, Tobin B, Nieuwenhuis M, Reidy B, Bolger T, Saiz G, Green C, Farrell ET, Osborne B (2009) Carbon stock and stock changes across a Sitka spruce chronosequence on surface-water gley soils. Forestry 82(3):255–272. https://doi.org/10.1093/forestry/cpp005

    Article  Google Scholar 

  • Bravo-Oviedo A, Ruiz-Peinado R, Modrego P, Alonso R, Montero G (2015) Forest thinning impact on carbon stock and soil condition in Southern European populations of P. sylvestris L. For Ecol Manag 357:259–267. https://doi.org/10.1016/j.foreco.2015.08.005

    Article  Google Scholar 

  • Carter MR, Gregorich EG (2008) Soil sampling and methods of analysis. CRC Press, Boca Raton, p 1224

    Google Scholar 

  • Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR, Ni J, Holland EA (2001) Net primary production in tropical forests: an evaluation and synthesis of existing field data. Ecol Appl 11:371–384

    Article  Google Scholar 

  • Çömez A (2012) Determination of carbon sequestration in Scots pine (Pinus sylvestris L.) stands on Sündiken Mountain-Eskişehir. Research Institute for Forest Soil and Ecology Press, Eskişehir, p 123 (in Turkish)

    Google Scholar 

  • Çömez A, Tolunay D, Güner ŞT (2019) Litterfall and the effects of thinning and seed cutting on carbon input into the soil in Scots pine stands in Turkey. Eur J Forest Res 138(1):1–14. https://doi.org/10.1007/s10342-018-1148-6

    Article  Google Scholar 

  • Eker M, Acar HH, Özçelik R, Alkan H, Gürlevik N, Çoban HO, Korkmaz M, Yılmaztürk A (2013) Investigation of the availability of harvest residues in forestry. The Scientific and Technological Research Council of Turkey (TUBİTAK), Project Number: 110O435, Isparta, p 435 (in Turkish)

  • Erkan N, Comez A, Aydin AC, Denli O, Erkan S (2018) Litterfall in relation to stand parameters and climatic factors in Pinus brutia forests in Turkey. Scand J For Res 33(4):338–346. https://doi.org/10.1080/02827581.2017.1406135

    Article  Google Scholar 

  • Fonseca W, Benayas JMR, Alice FE (2011) Carbon accumulation in the biomass and soil of different aged secondary forests in the humid tropics of Costa Rica. For Ecol Manag 262:1400–1408. https://doi.org/10.1016/j.foreco.2011.06.036

    Article  Google Scholar 

  • Goussanou CA, Guendehou S, Assogbadjo AE, Sinsin B (2018) Application of site-specific biomass models to quantify spatial distribution of stocks and historical emissions from deforestation in a tropical forest ecosystem. J For Res 29(1):205–213. https://doi.org/10.1007/s11676-017-0411-x

    Article  CAS  Google Scholar 

  • Grüneberg E, Zıche D, Wellbrock N (2014) Organic carbon stocks and sequestration rates of forest soils in Germany. Glob Change Biol 20:2644–2662. https://doi.org/10.1111/gcb.12558

    Article  Google Scholar 

  • Güner ŞT, Çömez A (2017) Biomass equations and changes in carbon stock in afforested black pine (Pinus nigra Arnold. subsp. pallasiana (Lamb.) Holmboe) stands in Turkey. Fresenius Environ Bull 26(3):2368–2379

    Google Scholar 

  • Güner ŞT, Makineci E (2017) Determination of annual organic carbon sequestration in soil and forest floor of Scots pine forests on The Türkmen Mountain (Eskişehir, Kütahya). J Fac For Istanb Univ 67(2):109–115. https://doi.org/10.17099/jffiu.199494

    Article  Google Scholar 

  • Güner ŞT, Çömez A, Özkan K, Karataş R, Çelik N (2016) Modelling the productivity of Anatolian black pine plantations in Turkey. J Fac For Istanb Univ 66(1):159–172. https://doi.org/10.17099/jffiu.18731(ın Turkish)

    Article  Google Scholar 

  • Hunt R (1990). Relative growth rates. In: Basic growth analysis. Springer, Dordrecht, pp 25–34

  • IPCC (2003) Good practice guidance for land use, land-use change and forestry. In: IGES, Penman J, Gytarsky M, Hiraishi T, Krug T, Kruger D, Pipatti R, Buendia L, Miwa K, Ngara T, Tanabe K, Wagner F (eds) IPCC/OECD/IEA/IGES, Hayama, Japan. http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf_contents.html. Accessed 14 Dec 2015

  • IPCC (2006) IPCC guidelines for national greenhouse gas inventories, prepared by the National Greenhouse Gas Inventories Programme. In: IGES, Japan (Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K) (eds) http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html. Accessed 21 June 2019

  • IUSS Working Group WRB (2015) World reference base for soil resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome, p 192

  • Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkinen K, Byrne KA (2007) How strongly can forest management influence soil carbon sequestration? Geoderma 137:253–268. https://doi.org/10.1016/j.geoderma.2006.09.003

    Article  CAS  Google Scholar 

  • Jiang L, Zhao W, Lewis BJ, Wei Y, Dai L (2018) Effects of management regimes on carbon sequestration under the Natural Forest Protection Program in northeast China. J For Res 29(5):1187–1194. https://doi.org/10.1007/s11676-017-0542-0

    Article  CAS  Google Scholar 

  • Jurgensen M, Tarpey R, Pickens J, Kolka R, Palik B (2012) Long-term effect of silvicultural thinnings on soil carbon and nitrogen pools. Soil Sci Soc Am J 76:1418–1425. https://doi.org/10.2136/sssaj2011.0257

    Article  CAS  Google Scholar 

  • Karaöz MÖ (1993) The amounts and nutrient contents of forest floor of some coniferous stands at the Atatürk arboretum near İstanbul. J Fac For Istanb Univ A 43(1):93–115 (ın Turkish)

    Google Scholar 

  • Karataş R, Çömez A, Güner ŞT (2017) Determination of carbon stocks in cedar (Cedrus libani A. Rich.) afforestation areas. Journal of Forestry Research 4(2):107–120. https://doi.org/10.17568/ogmoad.338029(ın Turkish)

    Article  Google Scholar 

  • Karatepe Y (2004) Amount of nitrogen and organic carbon in soil and nitrogen and organic matter in forest floor of black pine (Pinus nigra Arn. supsp. pallasiana (Lamb.) Holmboe) stands developed in Gölcük (Isparta). Fac For J Süleyman Demirel Univ A(2):1–16 (ın Turkish)

    Google Scholar 

  • Korkanç SY (2014) Effects of afforestation on soil organic carbon and other soil properties. CATENA 123:62–69. https://doi.org/10.1016/j.catena.2014.07.009

    Article  CAS  Google Scholar 

  • Laclau P (2003) Biomass and carbon sequestration of ponderosa pine plantations and native cypress forests in northwest Patagonia. For Ecol Manag 180:317–333. https://doi.org/10.1016/S0378-1127(02)00580-7

    Article  Google Scholar 

  • Lee J, Tolunay D, Makineci E, Çömez A, Son YM, Kim R, Son Y (2016) Estimating the age-dependent changes in carbon stocks of Scots pine (Pinus sylvestris L.) stands in Turkey. Ann For Sci 73(2):523–531. https://doi.org/10.1007/s13595-016-0546-5

    Article  Google Scholar 

  • Lee J, Makineci E, Tolunay D, Son Y (2018) Estimating the effect of abandoning coppice management on carbon sequestration by oak forests in Turkey with a modeling approach. Sci Total Environ 640–641:400–405. https://doi.org/10.1016/j.scitotenv.2018.05.341

    Article  CAS  PubMed  Google Scholar 

  • Lettens S, Orshoven JV, Wesemael BV, Muys B, Perrin D (2005) Soil organic carbon changes in landscape units of Belgium between 1960 and 2000 with reference to 1990. Glob Change Biol 11:2128–2140. https://doi.org/10.1111/j.1365-2486.2005.001074.x

    Article  Google Scholar 

  • Makineci E (2005) Thinning effects on diameter increment and some soil properties in sessile oak (Quercus petraea (Matlusch) Lieb.) coppice forest. Fac For J Süleyman Demirel Univ A(2):1–10 (ın Turkish)

    Google Scholar 

  • Makineci E, Ozdemir E, Caliskan S, Yilmaz E, Kumbasli M, Keten A, Beskardes V, Zengin H, Yilmaz H (2015) Ecosystem carbon pools of coppice-originated oak forests at different development stages. Eur J For Res 134(2):319–333. https://doi.org/10.1007/s10342-014-0854-y

    Article  CAS  Google Scholar 

  • Miegroet HV, Moore PT, Tewksbury CE, Nicholas NS (2007) Carbon sources and sinks in high-elevation spruce-fir forests of the Southeastern US. For Ecol Manag 238:249–260. https://doi.org/10.1016/j.foreco.2006.10.020

    Article  Google Scholar 

  • Moısen GG, Frescıno TS (2002) Comparing five modelling techniques for predicting forest characretistics. Ecol Model 157:209–225. https://doi.org/10.1016/S0304-3800(02)00197-7

    Article  Google Scholar 

  • Pausas JG (1997) Litter fall and litter decomposition in Pinus sylvestris forests of the eastern Pyrenees. J Veg Sci 8:643–650. https://doi.org/10.2307/3237368

    Article  Google Scholar 

  • Payne NJ, Cameron DA, Leblanc JD, Morrison IK (2019) Carbon storage and net primary productivity in Canadian boreal mixedwood stands. J For Res 30(5):1667–1678. https://doi.org/10.1007/s11676-019-00886-0

    Article  CAS  Google Scholar 

  • Peichl M, Arain MA (2006) Above- and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests. Agric For Meteorol 140:51–63. https://doi.org/10.1016/j.agrformet.2006.08.004

    Article  Google Scholar 

  • Polat S, Polat O, Kantarcı MD, Tüfekçi S, Aksay Y (2014) Relationships between some environmental characteristics and site indices (H38) of Taurus cedar (Cedrus libani A. Rich.) and black pine (Pinus nigra Arnold.) afforestation areas in the Kadıncık Basin of Mersin. Journal of Forestry Research 1(1):22–37. https://doi.org/10.17568/oad.86449(ın Turkish)

    Article  Google Scholar 

  • Prietzel J, Stetter U, Klemmt H-J, Rehfuess KE (2006) Recent carbon and nitrogen accumulation and acidification in soils of two Scots pine ecosystems in Southern Germany. Plant Soil 289:153–170. https://doi.org/10.1007/s11104-006-9120-5

    Article  CAS  Google Scholar 

  • Ruiz-Peinado R, Bravo-Oviedo A, Lopez-Senespleda E, Montero G, del Río M (2013) Do thinnings influence biomass and soil carbon stocks in Mediterranean maritime pinewoods. Eur J Forest Res 132:253–262. https://doi.org/10.1007/s10342-012-0672-z

    Article  CAS  Google Scholar 

  • Ruiz-Peinado R, Bravo-Oviedo A, Montero G, del Río M (2016) Carbon stocks in a Scots pine afforestation under different thinning intensities management. Mitig Adapt Strat Glob Change 21:1059–1072. https://doi.org/10.1007/s11027-014-9585-0

    Article  Google Scholar 

  • Schulp CJE, Nabuurs G-J, Verburg PH, Waal RW (2008) Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories. For Ecol Manag 256:482–490. https://doi.org/10.1016/j.foreco.2008.05.007

    Article  Google Scholar 

  • Sevgi O, Makineci E, Karaöz Ö (2011) The forest floor and mineral soil carbon pools of six different forest tree species. Ekoloji 20(81):8–14

    Article  Google Scholar 

  • SPSS v.22.0® (2015) SPSS 22.0 guide to data analysis. Prentice Hall, Upper Saddle River

  • Tolunay D (1997) Effects of stand treatments on nutrient cycling in young Scots pine (Pinus sylvestris L.) stands on Aladağ Mountain in Bolu. Ph.D. Dissertation, İstanbul University, Graduate School of Sciences, İstanbul, p 213 (in Turkish)

  • Tolunay D (2011) Total carbon stocks and carbon accumulation in living tree biomass in forest ecosystems of Turkey. Turk J Agric For 35:265–279. https://doi.org/10.3906/tar-0909-369

    Article  CAS  Google Scholar 

  • Tolunay D, Çömez A (2008) Organic carbon stocks in soils and forest floor in Turkish forests. In: Sympossium on air pollution and it’s control, 22–25 October 2008, Hatay, Turkey, pp. 750–765 (in Turkish)

  • Tolunay D, Makineci E, Şahin A, Özturna AG, Pehlivan S, Abdelkaım MMA. 2017. Carbon sequestration in maritime pine (Pinus pinaster Ait.) and stone pine (Pinus pinea L.) plantations on İstanbul-Durusu sand dunes. The Scientific and Technological Research Council of Turkey (TUBİTAK), Project Number: 114O797, İstanbul, p 148 (in Turkish)

  • Tufekcioglu A, Guner S, Tilki F (2005) Thinning effects on production, root biomass and some soil properties in a young oriental beech stand in Artvin, Turkey. J Environ Biol 26(1):91–95

    CAS  PubMed  Google Scholar 

  • Wellbrock N, Grüneberg E, Riedel T, Polley H (2017) Carbon stocks in tree biomass and soils of German forests. Cent Eur For J 63:105–112. https://doi.org/10.1515/forj-2017-0013

    Article  Google Scholar 

  • Yavuz H, Mısır N, Mısır M (2004) Growth models for black pine plantations. The Scientific and Technological Research Council of Turkey (TUBİTAK), Project Number: 2747, Trabzon, p 223 (in Turkish)

  • Yildiz O, Cromack K Jr, Radosevich SR, Martinez-Ghersa MA, Baham JE (2011) Comparison of 5th- and 14th-year Douglas-fir and understory vegetation responses to selective vegetation removal. For Ecol Manage 262:586–597. https://doi.org/10.1016/j.foreco.2011.04.015

    Article  Google Scholar 

  • Yimer F, Ledin S, Abdelkadir A (2006) Soil organic carbon and total nitrogen stocks as affected by topographic aspect and vegetation in the Bale Mountains, Ethiopia. Geoderma 135:335–344. https://doi.org/10.1016/j.geoderma.2006.01.005

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was presented orally as “Changes in Carbon Stocks of Soil and Forest Floor in Black Pine Plantations”, and its abstract was published in the Proceedings of the Conference “10th International Soil Congress 2019” in Ankara, Turkey, 17–19 June 2019, p 305.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Şükrü Teoman Güner.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding: This study was conducted as part of the project, “Changes in carbon stocks on soil and forest floor in black pine plantations (ESK-30(6321)/2017-2018)” funded by the Turkish General Directorate of Forestry.

The online version is available at http://www.springerlink.com.

Corresponding editor: Yu Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Güner, Ş.T., Güner, D. Changes in carbon stocks of soil and forest floor in black pine plantations in Turkey. J. For. Res. 32, 339–347 (2021). https://doi.org/10.1007/s11676-019-01073-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-019-01073-x

Keywords

Navigation