Roles of abscisic acid and gibberellins in maintaining primary and secondary dormancy of Korean pine seeds

Abstract

Primary dormancy of seeds of Korean pine (Pinus koraiensis Sieb. et Zucc.) after dispersal in the autumn and the induction of secondary dormancy the first summer following seed dispersal limit the regeneration of mixed broadleaved Korean pine forests in Northeast China. This study was to determine how changes in the levels of abscisic acid (ABA) and gibberellic acid (GA) maintain primary and secondary dormancy of Korean pine seeds under germination conditions. We transferred seeds with one of five primary dormancy states or three secondary dormancy states to germination conditions and measured changes in the levels of ABA, GA1+3 (GA1 and GA3) and GA4+7 (GA4 and GA7) in the seed coat, megagametophyte and embryo during incubation. Seed coat ABA levels in primary dormant seeds (PDS) and ABA levels in various parts of secondary dormant seeds (SDS) gradually declined during incubation but were still higher than in seeds for which dormancy was progressively released. GA4+7 and GA1+3 levels in embryos greatly decreased 35% and 24%, respectively, during incubation of SDS, and thus, the ratio of ABA to GA4+7 in embryos and megagametophytes significantly increased. The ratio of ABA to GA1+3 in various parts of SDS increased slightly during incubation. In contrast, in seeds for which secondary dormancy was already released, GA4+7 and GA1+3 levels in the embryo, GA4+7/ABA ratio in the embryo and seed coat, and the GA1+3/ABA in the embryo and megagametophyte significantly increased during incubation. There was no trend in the changes in the levels of ABA, GA4+7 or GA1+3 in embryos and megagametophytes of PDS or the levels of GA4+7 or GA1+3 in megagametophytes of SDS during incubation. The results suggest that high ABA levels in the seed coat maintain primary dormancy of Korean pine seeds. Maintenance of secondary dormancy involves a reduction of GA4+7, GA1+3, GA4+7/ABA, and GA1+3/ABA and the retention of high ABA levels.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Ali-Rachedi S, Bouinot D, Wagner MH, Bonnet M, Sotta B, Grappin P, Jullien M (2004) Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta 219(3):479–488

    CAS  PubMed  Google Scholar 

  2. Argyris J, Dahal P, Hayashi E, Still DW, Bradford KJ (2008) Genetic variation for lettuce seed thermoinhibition is associated with temperature-sensitive expression of abscisic acid, gibberellin, and ethylene biosynthesis, metabolism, and response genes. Plant Physiol 148(2):926–947

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Baskin CC, Baskin JM (1998) Seeds—ecology, biogeography, and evolution of dormancy and germination. Academic Press, San Diego, pp 50–51

    Google Scholar 

  4. Baskin JM, Baskin CC (2004) A classification system for seed dormancy. Seed Sci Res 14(1):1–16

    Google Scholar 

  5. Benech-Arnold RL, Gualano N, Leymarie J, Côme D, Corbineau F (2006) Hypoxia interferes with ABA metabolism and increases ABA sensitivity in embryos of dormant barley grains. J Exp Bot 57(6):1423–1430

    CAS  PubMed  Google Scholar 

  6. Bewley JD, Bradford K, Hilhorst H, Nonogaki H (2013) Seeds: physiology of development, germination and dormancy. Springer, New York, p 248

    Google Scholar 

  7. Bian F, Su J, Liu W, Li S (2018) Dormancy release and germination of Taxus yunnanensis seeds during wet sand storage. Sci Rep 8:3205

    PubMed  PubMed Central  Google Scholar 

  8. Bianco J, Garello G, Le Page-Degivry MT (1997) De novo ABA synthesis and expression of seed dormancy in a gymnosperm: Pseudotsuga menziesii. Plant Growth Regul 21(2):115–119

    CAS  Google Scholar 

  9. Bicalho EM, Pintó-Marijuan M, Morales M, Müller M, Munné-Bosch S, Garcia QS (2015) Control of macaw palm seed germination by the gibberellin/abscisic acid balance. Plant Biol 17(5):990–996

    CAS  PubMed  Google Scholar 

  10. Cao D, Baskin CC, Baskin JM, Yang F, Huang ZY (2014) Dormancy cycling and persistence of seeds in soil of a cold desert halophyte shrub. Ann Bot 113(1):171–179

    PubMed  Google Scholar 

  11. Chae SH, Yoneyama K, Takeuchi Y, Joel DM (2004) Fluridone and norflurazon, carotenoid—biosynthesis inhibitors, promote seed conditioning and germination of the holoparasite Orobanche minor. Physiol Plant 120(2):328–337

    CAS  PubMed  Google Scholar 

  12. Chen SY, Chien CT, Chung JD, Yang YS, Kuo SR (2007) Dormancy-break and germination in seeds of Prunus campanulata (Rosaceae): role of covering layers and changes in concentration of abscisic acid and gibberellins. Seed Sci Res 17(1):21–32

    CAS  Google Scholar 

  13. Chen SY, Kuo SR, Chien CT (2008) Roles of gibberellins and abscisic acid in dormancy and germination of red bayberry (Myrica rubra) seeds. Tree Physiol 28(9):1431–1439

    PubMed  Google Scholar 

  14. Chien CTE, Kuo-Huang LL, Lin TP (1998) Changes in ultrastructure and abscisic acid level, and response to applied gibberellins in Taxus mairei seeds treated with warm and cold stratification. Ann Bot 81(1):41–47

    CAS  Google Scholar 

  15. Claessens SM (2012) Dormancy cycling in seeds: mechanisms and regulation. Dissertation, Wageningen University, pp 2–3

  16. Corbineau F, Bianco J, Garello G, Côme D (2002) Breakage of Pseudotsuga menziesii seed dormancy by cold treatment as related to changes in seed ABA sensitivity and ABA levels. Physiol Plant 114(2):313–319

    CAS  PubMed  Google Scholar 

  17. Deng ZJ, Hu XF, Ai XR, Yao L, Deng SM, Pu X, Song SQ (2016) Dormancy release of Cotinus coggygria seeds under a pre-cold moist stratification: an endogenous abscisic acid/gibberellic acid and comparative proteomic analysis. New For 47(1):105–118

    Google Scholar 

  18. Dias DS, Ribeiro LM, Lopes PSN, Munné-Bosch S, Garcia QS (2017) Hormonal profile and the role of cell expansion in the germination control of Cerrado biome palm seeds. Plant Physiol Biochem 118:168–177

    CAS  PubMed  Google Scholar 

  19. Feurtado JA, Ambrose SJ, Cutler AJ, Ross AR, Abrams SR, Kermode AR (2004) Dormancy termination of western white pine (Pinus monticola Dougl. Ex D. Don) seeds is associated with changes in abscisic acid metabolism. Planta 218(4):630–639

    CAS  PubMed  Google Scholar 

  20. Feurtado JA, Yang J, Ambrose SJ, Cutler AJ, Abrams SR, Kermode AR (2007) Disrupting abscisic acid homeostasis in western white pine (Pinus monticola Dougl. ex D. Don) seeds induces dormancy termination and changes in abscisic acid catabolites. J Plant Growth Regul 26(1):46–54

    CAS  Google Scholar 

  21. Fidler J, Grabowska A, Prabucka B, Więsyk A, Góra-Sochacka A, Bielawski W, Pojmaj M, Zdunek-Zastocka E (2018) The varied ability of grains to synthesize and catabolize ABA is one of the factors affecting dormancy and its release by after-ripening in imbibed triticale grains of cultivars with different pre-harvest sprouting susceptibilities. J Plant Physiol 226:48–55

    CAS  PubMed  Google Scholar 

  22. Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171(3):501–523

    CAS  Google Scholar 

  23. Footitt S, Clay HA, Dent K, Finch-Savage WE (2014) Environment sensing in spring—dispersed seeds of a winter annual Arabidopsis influences the regulation of dormancy to align germination potential with seasonal changes. New Phytol 202(3):929–939

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Frey A, Audran C, Marin E, Sotta B, Marionpoll A (1999) Engineering seed dormancy by the modification of zeaxanthin epoxidase gene expression. Plant Mol Biol 39(6):1267–1274

    CAS  PubMed  Google Scholar 

  25. Gao XY, Fang YR, Gao RF, Tan ZY (1983) Relationships between the abscisic acid levels and characteristic of dormancy-germination in several pine seeds. Chin Sci Bull 20:1267–1269 (in Chinese)

    Google Scholar 

  26. Gao RR, Zhao RH, Huang ZY, Yang XJ, Wei XY, He Z, Walck JL (2018) Soil temperature and moisture regulate seed dormancy cycling of a dune annual in a temperate desert. Environ Exp Bot 155:688–694

    Google Scholar 

  27. Gubler F, Millar AA, Jacobsen JV (2005) Dormancy release, ABA and pre-harvest sprouting. Curr Opin Plant Biol 8(2):183–187

    CAS  PubMed  Google Scholar 

  28. Hauvermale AL, Tuttle KM, Takebayashi Y, Seo M, Steber CM (2015) Loss of Arabidopsis thaliana seed dormancy is associated with increased accumulation of the GID1 GA hormone receptors. Plant Cell Physiol 56(9):1773–1785

    CAS  PubMed  Google Scholar 

  29. Hilhorst HWM, Karssen CM (1992) Seed dormancy and germination: the role of abscisic acid and gibberellins and the importance of hormone mutants. Plant Growth Regul 11(3):225–238

    CAS  Google Scholar 

  30. Hoang HH, Bailly C, Corbineau F, Leymarie J (2013a) Induction of secondary dormancy by hypoxia in barley grains and its hormonal regulation. J Exp Bot 64(7):2017–2025

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hoang HH, Sota B, Gendreau E, Bailly C, Leymarie J, Corbineau F (2013b) Water content: a key factor of the induction of secondary dormancy in barley grains as related to ABA metabolism. Physiol Plant 148(2):284–296

    CAS  PubMed  Google Scholar 

  32. Hoang HH, Sechet J, Bailly C, Leymarie J, Corbineau F (2014) Inhibition of germination of dormant barley (Hordeum vulgare L.) grains by blue light as related to oxygen and hormonal regulation. Plant Cell Environ 37(6):1393–1403

    CAS  PubMed  Google Scholar 

  33. Ibarra SE, Tognacca RS, Dave A, Graham IA, Sanchez RA, Botto JF (2016) Molecular mechanisms underlying the entrance in secondary dormancy of Arabidopsis seeds. Plant Cell Environ 39(1):213–221

    CAS  PubMed  Google Scholar 

  34. Ishikawa Y, Krestov PV, Namikawa K (1999) Disturbance history and tree establishment in old-growth Pinus koraiensis-hardwood forests in the Russian Far East. J Veg Sci 10(4):439–448

    Google Scholar 

  35. Kermode AR (2011) Seed dormancy: methods and protocols. Humana Press, New York, p 49

    Google Scholar 

  36. Koornneef M, Bentsink L, Hilhorst H (2002) Seed dormancy and germination. Curr Opin Plant Biol 5(1):33–36

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee KP, Piskurewicz U, Tureckova V, Strnad M, Lopez-Molina L (2010) A seed coat bedding assay shows that RGL2-dependent release of abscisic acid by the endosperm controls embryo growth in Arabidopsis dormant seeds. Proc Natl Acad Sci USA 107(44):19108–19113

    CAS  PubMed  Google Scholar 

  38. Leymarie J, Robayo-Romero ME, Gendreau E, Benech-Arnold RL, Corbineau F (2008) Involvement of ABA in induction of secondary dormancy in barley (Hordeum vulgare L.) seeds. Plant Cell Physiol 49(12):1830–1838

    CAS  PubMed  Google Scholar 

  39. Liu YY, Zang DK (2016) Effects of hormone balance on Korean Hackberry seed germination. Afr J Agric Res 11(29):2650–2657

    CAS  Google Scholar 

  40. Liu Y, Müller K, El-Kassaby YA, Kermode AR (2015) Changes in hormone flux and signaling in white spruce (Picea glauca) seeds during the transition from dormancy to germination in response to temperature cues. BMC Plant Biol 15(1):292

    PubMed  PubMed Central  Google Scholar 

  41. Ma YM, Chen XD, Guo BL (2018) Identification of genes involved in metabolism and signalling of abscisic acid and gibberellins during Epimedium pseudowushanense B.L. seed morphophysiological dormancy. Plant Cell Rep 37(7):1061–1075

    CAS  PubMed  Google Scholar 

  42. Malavert C, Batlla D, Benech-Arnold RL (2017) Temperature-dependent regulation of induction into secondary dormancy of Polygonum aviculare, L. seeds: a quantitative analysis. Ecol Model 352:128–138

    Google Scholar 

  43. Marowa P, Ding A, Kong Y (2016) Expansins: roles in plant growth and potential applications in crop improvement. Plant Cell Rep 35(5):949–965

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Metzger JD (1983) Role of endogenous plant growth regulators in seed dormancy of Avenu futuu, II Gibberel-lines. Plant Physiol 73:791–795

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Meulebrouck K, Verheyen K, Hermy M, Baskin CC (2010) Will the sleeping beauties wake up? Seasonal dormancy cycles in seeds of the holoparasite Cuscuta epithymum. Seed Sci Res 20(1):23–30

    Google Scholar 

  46. Okamoto M, Tatematsu K, Matsui A, Morosawa T, Ishida J, Tanaka M, Endo TA, Mochizuki Y, Toyoda T, Kamiya Y, Shinozaki K, Nambara E, Seki M (2010) Genome-wide analysis of endogenous abscisic acid-mediated transcription in dry and imbibed seeds of Arabidopsis using tiling arrays. Plant J 62(1):39–51

    CAS  PubMed  Google Scholar 

  47. Qi Y, Bilan MV, Chin KL (1993) New method for breaking Korean pine seed dormancy. J Arboric 19(2):113–117

    Google Scholar 

  48. Rodríguez MV, Bodrone MP, Castellari MP, Batlla D (2018) Effect of storage temperature on dormancy release of sunflower (Helianthus annuus) achenes. Seed Sci Res 28(2):101–111

    Google Scholar 

  49. Si QQ, Ma Y, Zang DK (2016) The causes of dormancy and the changes of endogenous hormone content in Cephalotaxus sinensis seeds. Agric Sci 7(12):834–849

    CAS  Google Scholar 

  50. Skubacz A, Daszkowska-Golec A (2017) Seed dormancy: the complex process regulated by abscisic acid, gibberellins, and other phytohormones that makes seed germination work. In: El-Esawi M (ed) Phytohormones—signaling mechanisms and crosstalk in plant development and stress responses. InTech, New York, pp 77–100

    Google Scholar 

  51. Song Y, Zhu JJ (2016) How does moist cold stratification under field conditions affect the dormancy release of Korean pine seed (Pinus koraiensis)? Seed Sci Technol 44(1):1–16

    Google Scholar 

  52. Song Y, Zhu JJ, Yan QL, Wang GC (2018) Korean pine seed: linking changes in dormancy to germination in the two years following dispersal. Forestry 91(1):98–109

    Google Scholar 

  53. Su L, Lan Q, Pritchard HW, Xue H, Wang X (2016) Reactive oxygen species induced by cold stratification promote germination of Hedysarum scoparium seeds. Plant Physiol Biochem 109:406–415

    CAS  PubMed  Google Scholar 

  54. Tan ZY, Dong YD, Fang YR, Gao RF (1983) Relationships between abscisic acid, seed coat and dormancy of Pinus Koraiensis seeds. Sci China B 9:816–822 (in Chinese)

    Google Scholar 

  55. Tian Y, Wu JG, Kou XJ, Wang TM, Mou P, Ge JP (2009) Spatiotemporal pattern and major causes of the Amur tiger population dynamics. Biodivers Sci 17:211–225 (in Chinese)

    Google Scholar 

  56. Tuttle KM, Martinez SA, Schramm EC, Takebayashi Y, Seo M, Steber CM (2015) Grain dormancy loss is associated with changes in ABA and GA sensitivity and hormone accumulation in bread wheat, Triticum aestivum (L.). Seed Sci Res 25(2):179–193

    CAS  Google Scholar 

  57. Wang D, Gao Z, Du P, Xiao W, Tan Q, Chen X, Li L, Gao D (2016) Expression of ABA metabolism-related genes suggests similarities and differences between seed dormancy and bud dormancy of peach (Prunus persica). Front Plant Sci 6:1248

    PubMed  PubMed Central  Google Scholar 

  58. Wang YM, Wang LJ, Yao B, Liu Z, Li F (2018) Changes in ABA, IAA, GA3, and ZR Levels during seed dormancy release in Idesia polycarpa Maxim from Jiyuan. Pol J Environ Stud 27(4):1833–1839

    CAS  Google Scholar 

  59. Weiler EW (1981) Radioimmunoassay for pmol quantities of indole-3-acetic acid for use with highly stable [125I]- and [3H]IAA derivatives asradiotracers. Planta 153(4):319–325

    CAS  PubMed  Google Scholar 

  60. White CN, Proebsting WM, Hedden P, Rivin CJ (2000) Gibberellins and seed development in maize. I. Evidence that gibberellin/abscisic acid balance governs germination versus maturation pathways. Plant Physiol 122:1081–1088

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Yang YM, Xu CN, Wang BM, Jia JZ (2001) Effects of plant growth regulators on secondary wall thickening of cotton fibers. Plant Growth Regul 35(3):233–237

    CAS  Google Scholar 

  62. Yao GQ (1966) The methods to bury seeds of Pinus koraiensis Sieb. et Zucc. and Fraxinus mandshurica for short period. For Sci Technol 23:6 (in Chinese)

    Google Scholar 

Download references

Acknowledgements

We thank Kai Yang and Lizhong Yu and Xiao Zheng and Tao Sun for valuable discussion and suggestions about this study. We also thank Hongjun Xu, Jingpu Zhang, Weiwei Zhang and Shuang Xu for field support and technical assistance.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jiaojun Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding: This work was supported by the National Natural Science Foundation of China (31330016).

The online version is available at http://www.springerlink.com.

Corresponding editor: Yanbo Hu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Zhu, J. & Yan, Q. Roles of abscisic acid and gibberellins in maintaining primary and secondary dormancy of Korean pine seeds. J. For. Res. 31, 2423–2434 (2020). https://doi.org/10.1007/s11676-019-01026-4

Download citation

Keywords

  • Abscisic acid
  • Gibberellic acid4 and acid7
  • Gibberellic acid1 and acid3
  • Korean pine
  • Primary dormancy
  • Secondary dormancy