Skip to main content
Log in

Climate and seasonal rainfall anomalies along an elevational gradient in the El Sira Mountains, Peru, and their impacts on tree radial growth

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

The explicit purpose of this study was to characterize climate and vegetation along the western slope of the El Sira Mountains (Peru) and evaluate radial tree growth in response to seasonal rainfall anomalies. From May 2011 until September 2015, we monitored radial stem growth of 67 trees using point dendrometers and measured climate within five sites along an altitudinal gradient. The transect extends from lowland terra firme forests, over submontane forests, late and mid successional montane cloud forests up to exposed elfin forests. Monthly rainfall estimates by the TRMM PR satellite (product 3B42) were highly correlated with our rain gauge observations but underestimate rainfall at high altitudes. Different intra-annual tree growth patterns could be identified within each elevational forest type, showing species with strictly seasonal growth, continuous growth or alternating growth patterns independent of the seasons. Stem growth at each site was generally larger during rainy seasons, except for the elfin forest. The rainy season from October 2013 to March 2014 was extraordinarily dry, with only 73% of long-term mean precipitation received, which resulted in reduced radial growth, again with the exception of the elfin forest. This indicates that montane tropical rain forests may suffer from prolonged droughts, while exposed ridges with elfin forests still receive plenty of precipitation and benefit from receiving more solar radiation for photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aiba S, Kitayama K (1999) Structure, composition and species diversity in an altitude-substrate matrix of rain forest tree communities on Mount Kinabalu, Borneo. Plant Ecol 140:139–157

    Article  Google Scholar 

  • Bellingham PJ, Tanner EVJ (2000) The influence of topography on tree growth, mortality, and recruitment in a tropical montane forest. Biotropica 32:378–384

    Article  Google Scholar 

  • Bookhagen B, Strecker MR (2008) Orographic barriers, high-resolution TRMM rainfall, and relief variations along the eastern Andes. Geophys Res Lett 35:L06403

    Article  Google Scholar 

  • Borchert R (1994) Water status and development of tropical trees during seasonal drought. Trees 8:115–124

    Article  Google Scholar 

  • Bräuning A, Homeier J, Cueva E et al (2008) Growth dynamics of trees in tropical mountain ecosystems. In: Beck E, Bendix J, Kottke I et al (eds) Gradients in a tropical mountain ecosystem of Ecuador. Springer, Berlin, pp 291–302

    Chapter  Google Scholar 

  • Bruijnzeel LA, Waterloo MJ, Proctor J et al (1993) Hydrological observations in montane rain forests on Gunung Silam, Sabah, Malaysia, with special reference to the ‘Massenerhebung’ effect. J Ecol 81:145–167

    Article  Google Scholar 

  • Casimiro WS, Labat D, Ronchail J et al (2013) Trends in rainfall and temperature in the Peruvian Amazon-Andes basin over the last 40 years (1965–2007). Hydrol Process 27:2944–2957

    Google Scholar 

  • Cavelier J (1996) Environmental factors and ecophysiological processes along altitudinal gradients in wet tropical mountains. In: Mulkey SS, Chazdon RL, Smith AP (eds) Tropical forest plant ecophysiology. Springer US, Boston, pp 399–439

    Chapter  Google Scholar 

  • Ciach GJ (2003) Local random errors in tipping-bucket rain gauge measurements. J Atmos Ocean Technol 20:752–759

    Article  Google Scholar 

  • Clark DA, Piper SC, Keeling CD, Clark DB (2003) Tropical rain forest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984–2000. Proc Natl Acad Sci 100:5852–5857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark DB, Clark DA, Oberbauer SF (2010) Annual wood production in a tropical rain forest in NE Costa Rica linked to climatic variation but not to increasing CO2. Glob Chang Biol 16:747–759

    Article  Google Scholar 

  • Cox PM, Harris PP, Huntingford C et al (2008) Increasing risk of Amazonian drought due to decreasing aerosol pollution. Nature 453:212–215

    Article  CAS  PubMed  Google Scholar 

  • Doughty CE (2011) An in situ leaf and branch warming experiment in the Amazon. Biotropica 43:658–665

    Article  Google Scholar 

  • Espinoza JC, Fraizy P, Guyot JL et al (2006) La variabilité des débits du Rio Amazonas au Pérou. Climate variability and change-hydrological impacts, 424–429. IAHS Publ 308:424–429

  • Espinoza JC, Ronchail J, Guyot JL et al (2009) Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador). Int J Climatol 29:1574–1594

    Article  Google Scholar 

  • Espinoza JC, Chavez S, Ronchail J et al (2015) Rainfall hotspots over the southern tropical Andes: spatial distribution, rainfall intensity, and relations with large-scale atmospheric circulation. Water Resour Res 51:3459–3475

    Article  Google Scholar 

  • Esquivel-Muelbert A, Baker TR, Dexter KG et al (2016) Seasonal drought limits tree species across the Neotropics. Ecography (Cop) 39:1–12

    Article  Google Scholar 

  • Feldpausch TR, Phillips OL, Brienen RJW et al (2016) Amazon forest response to repeated droughts. Global Biogeochem Cycles 30:964–982

    Article  CAS  Google Scholar 

  • Figueroa SN, Nobre CA (1990) Precipitation distribution over central and western tropical South America. Climanalise 5:36–45

    Google Scholar 

  • Frahm J-P, Gradstein SR (1991) An altitudinal zonation of tropical rain forests using byrophytes. J Biogeogr 18:669–678

    Article  Google Scholar 

  • Franchito SH, Rao VB, Vasques AC et al (2009) Validation of TRMM precipitation radar monthly rainfall estimates over Brazil. J Geophys Res 114:D02105

    Google Scholar 

  • Gentry AH (1988) Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann Mo Bot Gard 75:1–34

    Article  Google Scholar 

  • Gentry AH (1995) Patterns of diversity and floristic composition in neotropical montane forests. In: Churchill SP, Baslev H, Forero E, Luteyn JL (eds) Biodiversity and conservation of neotropical montane forests: proceedings. New York Botanical Garden, Bronx, pp 103–126

    Google Scholar 

  • Goff JA, Gratch S (1946) Low-pressure properties of water from −160 to 212°F. In: 52nd annual meeting of the American Society of Heating and Ventilating Engineers. New York, pp 95–122

  • Graham EA, Mulkey SS, Kitajima K et al (2003) Cloud cover limits net CO2 uptake and growth of a rainforest tree during tropical rainy seasons. Proc Natl Acad Sci 100:572–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham JG, Fischer M, Pócs T (2016) Bryoflora and landscapes of the eastern Andes of central Peru : I. Liverworts of the El Sira Communal Reserve. Acta Biol Planatarum Agriensis 4:3–60

    Article  Google Scholar 

  • Grubb PJ (1977) Control of forest growth and distribution on wet tropical mountains: with special reference to mineral nutrition. Annu Rev Ecol Syst 8:83–107

    Article  CAS  Google Scholar 

  • Güney A, Küppers M, Rathgeber C et al (2017) Intra-annual stem growth dynamics of Lebanon Cedar along climatic gradients. Trees 31:1375

    Article  Google Scholar 

  • Habib E, Krajewski WF, Kruger A (2001) Sampling errors of tipping-bucket rain gauge measurements. J Hydrol Eng 6:159–166

    Article  Google Scholar 

  • Herrmann R (1971) Die zeitliche Änderung der Wasserbindung im Boden unter verschiedenen Vegetationsformationen der Höhenstufen eines tropischen Hochgebirges (Sierra Nevada de Sta Marta/Kolumbien) (Temporal Change in Soil Moisture Potential under Different Vegetation Format). Erdkunde 25:90–102

    Article  Google Scholar 

  • Herwitz SR, Young SS (1994) Mortality, recruitment, and growth rates of montane tropical rain forest canopy trees on Mount Bellenden-Ker, Northeast Queensland, Australia. Biotropica 26:350–361

    Article  Google Scholar 

  • Holder CD (2008) Diameter growth and decline in a tropical montane cloud forest of the Sierra de Las Minas, Guatemala. J Trop For Sci 20:292–299

    Google Scholar 

  • Homeier J (2004) Baumdiversität, Waldstruktur und Wachstumsdynamik zweier tropischer Bergregenwälder in Ecuador und Costa Rica. Schweizerbart Science Publishers, Stuttgart

    Google Scholar 

  • Homeier J, Breckle S-W, Günter S et al (2010) Tree diversity, forest structure and productivity along altitudinal and topographical gradients in a species-rich Ecuadorian montane rain forest. Biotropica 42:140–148

    Article  Google Scholar 

  • Huete AR, Didan K, Shimabukuro YE et al (2006) Amazon rainforests green-up with sunlight in dry season. Geophys Res Lett 33:2–5

    Article  Google Scholar 

  • Huffman GJ, Bolvin DT, Nelkin EJ et al (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8:38–55

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Nelkin EJ (2010) The TRMM multi-satellite precipitation analysis (TMPA). In: Gebremichael M, Hossain F (eds) Satellite rainfall applications for surface hydrology. Springer, Dordrecht, pp 3–22

    Chapter  Google Scholar 

  • IGP (2005) Vulnerabilidad Actual y Futura ante el Cambio Climático y Medidas de Adaptación en la Cuenca del Río Mantaro

  • Iguchi T, Kozu T, Meneghini R et al (2000) Rain-profiling algorithm for the TRMM precipitation radar. J Appl Meteorol 39:2038–2052

    Article  Google Scholar 

  • Iguchi T, Kozu T, Kwiatkowski J et al (2009) Uncertainties in the rain profiling algorithm for the TRMM precipitation radar. J Meteorol Soc Jpn Ser II 87A:1–30

    Article  Google Scholar 

  • Kapos V, Tanner EVJ (1985) Water relations of jamaican upper montane rain forest trees. Ecology 66:241–250

    Article  Google Scholar 

  • Kessler M (2002) The elevational gradient of Andean plant endemism: varying influences of taxon-specific traits and topography at different taxonomic levels. J Biogeogr 29:1159–1165

    Article  Google Scholar 

  • Köcher P, Horna V, Leuschner C (2012) Environmental control of daily stem growth patterns in five temperate broad-leaved tree species. Tree Physiol 32:1021–1032

    Article  PubMed  Google Scholar 

  • Kummerow C, Simpson J, Thiele O et al (2000) The status of the tropical rainfall measuring mission (TRMM) after two years in orbit. J Appl Meteorol 39:1965–1982

    Article  Google Scholar 

  • Küppers M, Motzer T, Schmitt D et al (2008) Stand structure, transpiration responses in trees and vines and stand transpiration of different forest types within the mountain rainforest. In: Beck E, Bendix J, Kottke I et al (eds) Gradients in a tropical mountain ecosystem of Ecuador. Springer, Berlin, pp 243–258

    Chapter  Google Scholar 

  • Lang GE, Knight DH (1983) Tree growth, mortality, recruitment, and canopy gap formation during a 10-year period in a tropical moist forest. Ecology 64:1075–1080

    Article  Google Scholar 

  • Lauer W (1986) Die Vegetationszonierung der Neotropis und ihr Wandel seit der Eiszeit. Plant Biol 99:211–235

    Google Scholar 

  • Laurance WF, Curran TJ (2008) Impacts of wind disturbance on fragmented tropical forests: a review and synthesis. Austral Ecol 33:399–408

    Article  Google Scholar 

  • Laurance WF, Nascimento HEM, Laurance SG et al (2004) Inferred longevity of Amazonian rainforest trees based on a long-term demographic study. For Ecol Manag 190:131–143

    Article  Google Scholar 

  • Lawton RO (1982) Wind stress and elfin stature in a montane rain forest tree: an adaptive explanation. Am J Bot 69:1224–1230

    Article  Google Scholar 

  • Leuschner C, Moser G, Bertsch C et al (2007) Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador. Basic Appl Ecol 8:219–230

    Article  Google Scholar 

  • Lieberman D, Lieberman M, Peralta R, Hartshorn GS (1996) Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica. J Ecol 84:137–152

    Article  Google Scholar 

  • Lloyd J, Farquhar GD (2008) Effects of rising temperatures and [CO2] on the physiology of tropical forest trees. Philos Trans R Soc B Biol Sci 363:1811–1817

    Article  CAS  Google Scholar 

  • Lomolino M (2001) Elevation gradients of species-density: historical and prospective views. Glob Ecol Biogeogr 10:3–13

    Article  Google Scholar 

  • Lozano PC, Bussmann RW, Küppers M (2007) Montane forest diversity influencing pioneer flora on natural landslides at the Western side of Podocarpus National Park, South Ecuador. Rev UDO Agrícola 7:142–159

    Google Scholar 

  • Lyford WH (1969) ecology of an elfin forest in Puerto Rico. 7. Soil, root, and earthworm relationships. J Arnold Arbor 50:210–224

    Google Scholar 

  • Malhi Y, Phillips OLL, Lloyd J et al (2002) An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR). J Veg Sci 13:439–450

    Article  Google Scholar 

  • Mantas VM, Liu Z, Caro C, Pereira AJSCJSC (2015) Validation of TRMM multi-satellite precipitation analysis (TMPA) products in the Peruvian Andes. Atmos Res 163:132–145

    Article  Google Scholar 

  • Manz B, Buytaert W, Zulkafli Z et al (2016) High-resolution satellite-gauge merged precipitation climatologies of the tropical Andes. J Geophys Res Atmos 121:1190–1207

    Article  Google Scholar 

  • Marengo J (1983) Estudio sinoptico-climatico de los Friajes (Friagems) en la Amazonia Peruana. Rev For del Perú 12:1–26

    Google Scholar 

  • Martin PH, Bellingham PJ (2016) Towards integrated ecological research in tropical montane cloud forests. J Trop Ecol 32:345–354

    Article  Google Scholar 

  • Montegudo AL, Valenzuela Gamarra L, Vásquez Martínez R et al (2014) Primer catálogo de los árboles y afines de la Reserva Comunal El Sira, Perú. Arnaldo 21:127–164

    Google Scholar 

  • Moser G, Hertel D, Leuschner C (2007) Altitudinal change in LAI and Stand leaf biomass in tropical montane forests: a transect study in Ecuador and a pan-tropical meta-analysis. Ecosystems 10:924–935

    Article  Google Scholar 

  • Motzer T, Munz N, Küppers M, Schmitt D, Anhuf D (2005) Stomatal conductance, transpiration and sap flow of tropical montane rain forest treesin the southern Ecuadorian Andes. Tree Physiol 25:1283–1293

    Article  CAS  PubMed  Google Scholar 

  • Nešpor V, Sevruk B (1999) Estimation of wind-induced error of rainfall gauge measurements using a numerical simulation. J Atmos Ocean Technol 16:450–464

    Article  Google Scholar 

  • Newstrom LE, Frankie GW, Baker HG (1994) A new classification for plant phenology based on flowering patterns in lowland tropical rain forest trees at La Selva, Costa Rica. Biotropica 26:141–159

    Article  Google Scholar 

  • Phillips OL, Aragao LEOC, Lewis SL et al (2009) Drought sensitivity of the Amazon rainforest. Science (80-) 323:1344–1347

    Article  CAS  Google Scholar 

  • Romatschke U, Houze RA (2010) Extreme summer convection in South America. J Clim 23:3761–3791

    Article  Google Scholar 

  • Salazar LF, Nobre CA, Oyama MD (2007) Climate change consequences on the biome distribution in tropical South America. Geophys Res Lett 34:2–7

    Article  Google Scholar 

  • Semire FA, Mohd-Mokhtar R, Ismail W et al (2012) Ground validation of space-borne satellite rainfall products in Malaysia. Adv Space Res 50:1241–1249

    Article  Google Scholar 

  • Shreve F (1914) A montane rain-forest: a contribution to the physiological plant geography of Jamaica. Carnegie Institution of Washington, Washington

    Book  Google Scholar 

  • Simpson J, Adler RF, North GR (1988) A proposed tropical rainfall measuring mission (TRMM) satellite. Bull Am Meteorol Soc 69:278–295

    Article  Google Scholar 

  • Soethe N, Wilcke W, Homeier J et al (2008) Plant growth along the altitudinal gradient—role of plant nutritional status, fine root activity, and soil properties. In: Beck E, Bendix J, Kottke I et al (eds) Gradients in a tropical mountain ecosystem of Ecuador. Springer, Berlin, pp 259–266

    Chapter  Google Scholar 

  • Tyree MT, Cochard H, Davis SD (1994) Biophysical perspectives of xylem evolution: is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction? IAWA J 15:335–360

    Article  Google Scholar 

  • Unger M, Homeier J, Leuschner C (2013) Relationships among leaf area index, below-canopy light availability and tree diversity along a transect from tropical lowland to montane forests in NE Ecuador. Trop Ecol 54:33–45

    Google Scholar 

  • Valenzuela L, Vásquez Martínez R, Rojas Gonzáles R del P et al (2015) Línea base para el monitoreo de la vegetación en la Reserva Comunal El Sira (RCS) Baseline for screening the vegetation of El Sira Comunal Reserve. Arnaldo 22:243–268

    Google Scholar 

  • Von Humboldt A (1849) Aspects of nature, in different lands and different climates; with scientific elucidations. Translated by M. Sabine. Longman, Brown, Green and Longman, London

  • Wagner F, Rossi V, Aubry-Kientz M et al (2014) Pan-tropical analysis of climate effects on seasonal tree growth. PLoS ONE 9:20–22

    Google Scholar 

  • Walker LR, Zimmerman JK, Lodge DJ, Guzman-Grajales S (1996) An altitudinal comparison of growth and species composition in hurricane-damaged forests in Puerto Rico. J Ecol 84:877–889

    Article  Google Scholar 

  • Weaver PL, Medina E, Pool D et al (1986) Ecological observations in the dwarf cloud forest of the Luquillo Mountains in Puerto Rico. Biotropica 18:79–85

    Article  Google Scholar 

  • Xiao X, Hagen S, Zhang Q et al (2006) Detecting leaf phenology of seasonally moist tropical forests in South America with multi-temporal MODIS images. Remote Sens Environ 103:465–473

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the German Federal Ministry of the Environment, Nature Conservation and Nuclear Safety (BMU), the German Corporation for International Cooperation GmbH (GIZ) and the former head of the project Alois Kohler for the logistical and financial support which allowed us to conduct regular expeditions to the El Sira. We thank Juliane Diller, head of the ACP Panguana, Carlos Vásquez and family at Panguana station, for their hospitality and support. We also thank SERNANP el Sira and staff for cooperation and help along the altitudinal transect and the Peruvian Ministry of Environment (MINAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armin Niessner.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding: This work was supported by the German Federal Ministry of the Environment, Nature Conservation and Nuclear Safety (BMU), the German Corporation for International Cooperation GmbH (GIZ).

The online version is available at http://www.springerlink.com

Corresponding editor: Yu Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niessner, A., Küppers, M., Graham, J. et al. Climate and seasonal rainfall anomalies along an elevational gradient in the El Sira Mountains, Peru, and their impacts on tree radial growth. J. For. Res. 31, 1521–1538 (2020). https://doi.org/10.1007/s11676-019-00985-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-019-00985-y

Keywords

Navigation