Skip to main content
Log in

Decline and dieback of cork oak (Quercus suber L.) forests in the Mediterranean basin: a case study of Kroumirie, Northwest Tunisia

  • Review Article
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Assessing the vulnerability of forest ecosystems in the climate change context is a challenging task as the mechanisms that determine this vulnerability cannot be directly observed. Based on the ecological interrelationships between forests and climate, the present review focused on providing current information about vulnerability assessments of cork oak (Quercus suber L.) forests in the Mediterranean basin, especially, in the Kroumirie region (northwest Tunisia), currently under historic extreme drought conditions. From comparing recent findings in this region, we synthesized data on cork oak decline and mortality collected during the historic drought years 1988–1995 period. Climate change impacts cork forest decline, with special interest shown in elevated temperatures and drought; cork oak forest regeneration, and the adaptation of the Kroumirie forest to climate change, are reviewed herein. The studied region has been influenced largely by frequent prolonged drought periods, especially from 1988 to 1995. Droughts were found to consistently have a more detrimental impact on the growth and mortality rates of cork oak populations. Cork oak mortality was recorded for up to 63,622 trees. In the future, more research studies and observational data will be needed, which could represent an important key to understand ecosystem processes, and to facilitate the development of better models that project climate change impacts and vulnerability. The study is useful for researchers and forestry decision makers to develop the appropriate strategies to restore and protect ecosystems, and to help anticipate potential future droughts and climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: the EUFORGEN database http://www.euforgen.org/species/quercus-suber

Fig. 2
Fig. 3
Fig. 4

Adapted from Allen et al. (2010, 2015)

Fig. 5

Adapted from the Center for International Forestry Research (CIFOR), and the World Agroforestry Centre and USAID (2009)

Fig. 6

Similar content being viewed by others

References

  • Adams HD, Collins AD, Briggs SP, Vennetier M, Dickman LT, Sevanto SA, Garcia-Forner N, Powers HH, Mcdowell NG (2015) Experimental drought and heat can delay phenological development and reduce foliar and shoot growth in semiarid trees. Glob Chang Biol 21:4210–4220

    PubMed  Google Scholar 

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–371

    PubMed  Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg (Ted) EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage 259:660–684

    Google Scholar 

  • Allen CD, Breshears DD, McDowell NG (2015) On underestimation of global vulnerability to tree mortality and forest dieoff from hotter drought in the Anthropocene. Ecosphere 6:1–55

    Google Scholar 

  • Aloui A (2007) Analyse et diagnostic de l‘état actuel de la subéraie tunisienne et proposition d‘une stratégie de développement durable (étude stratégique pour le développement durable de la subéraie tunisienne), p 60

  • Amthor JS (2000) Direct effect of elevated CO2 on nocturnal in situ leaf respiration in nine temperate deciduous tree species is small. Tree Physiol 20(2):139–144

    PubMed  Google Scholar 

  • Apple ME, Lucash MS, Olszyk DM, Tingey DT (1998) Morphogenesis of Douglas-fir buds is altered at elevated temperature but not at elevated CO2. Environ Exp Bot 40(2):159–172

    Google Scholar 

  • Bakri M, Abourouh M (1995) Dépérissement du chêne-liège au Maroc: état des connaissances et perspectives. Bull OILB Srop 18:50–55

    Google Scholar 

  • Barbero M, Loisel R, Quézel P (1992) Biogeography, ecology and history of Mediterranean Quercus ilex ecosystems. Vegetatio 99–100:19–34. https://doi.org/10.1007/978-94-017-2836-2_2

    Article  Google Scholar 

  • Battaglia M (1996) Effects of seed dormancy and emergence time on the survival and early growth of Eucalyptus delegatensis and E. amygdalina. Aust J Bot 44:123–137

    Google Scholar 

  • Ben Jamâa M (2014) La mauvaise exploitation du liège: un facteur redoutable pouvant affecter la surface génératrice du liège et le dépérissement du chêne-liège. Integrated protection in oak forests. IOBC-WPRS Bull. 101:75–79

    Google Scholar 

  • Ben Jamâa M, Hasnaoui B (1996) Le dépérissement du chêne-liège (Quercus suber L.) en Tunisie. Ann. Rech. For. Maroc Numéro spé, pp 1–10

  • Ben Jamâa M, Sghaier T, Mnara S, Nouri M, Sellemi H (2005) Le dépérissement du chêne-liège dans la subéraie de Béllif (Tunisie): caractérisation et évaluation de son impact sur l’accroissement du liège. Integr Prot Oak For IOBC/wprs Bull. 28:17–24

    Google Scholar 

  • Ben Jamâa M, Chaar H, Brinsi M, Nouri M (2006) Impact des variations climatiques sur le dépérissement du chêne-liège (Quercus suber L.) dans la région de Aïn Draham. Les Ann. l’INRGREF Numéro spé, pp 138–153

  • Ben Zyane M (1998) La subéraie marocaine, produit économique et social à développer. Les Ann. l’INRGREF Numéro Spé, pp 12–21

  • Bentouati A (2008) La situation du cèdre de l’Atlas dans les Aurès (Algérie). Forêt méditerranéenne 29:203–208

    Google Scholar 

  • Bigler C, Bräker OU, Bugmann H, Dobbertin M, Rigling A (2006) Drought as an inciting mortality factor in scots pine stands of the Valais, Switzerland. Ecosystems 9:330–343

    Google Scholar 

  • Bouchaour Djabeur S (2001) Diagnostic sanitaire de quelques subéraies de l’ouest Algérien. Faculté des Sciences, Université de Tlemcen, Algeria, pp 85–92

    Google Scholar 

  • Bouhraoua RT, Villemant C, Khelil MA, Bouchaour S (2002) Situation sanitaire de quelques subéraies de l’Ouest algérien: impact des xylophages. IOBC-wprs Bull 25:85–92

    Google Scholar 

  • Boussaidi N (2005) Parcours en forêt et risque de dégradation des potentialités pastorales dans la IVème série forestière de Mekna (Tabarka-Tunisie). INAT, Tunisia, pp 14–15

    Google Scholar 

  • Boussaidi N (2012) Impacts de l‘action anthropique sur la subéraie tunisienne: essai de projection dans le futur d‘un écosystème (cas de la subéraie de Kroumirie- nord-ouest de la Tunisie). Ph.D Thesis. Institut National Agronomique de Tunisie (INAT), p 220

  • Breshears DD, Myers OB, Meyer CW, Barnes FJ, Zou CB, Allen CD, McDowell NG, Pockman WT (2009) Tree die-off in response to global change-type drought: mortality insights from a decade of plant water potential measurements. Front Ecol Environ 7:185–189

    Google Scholar 

  • Brinsi M (2004) Contribution à l’étude du dépérissement du chêne-liège dans la subéraie de Aïn Draham: impact des conditions climatiques. INAT, Tunisia, p 45

    Google Scholar 

  • Camarero JJ, Sangüesa-Barreda G, Vergarechea M (2016) Prior height, growth, and wood anatomy differently predispose to drought-induced dieback in two Mediterranean oak species. Ann For Sci 73:341–351

    Google Scholar 

  • Campos P, Daly-Hassen H, Oviedo JL, Ovando P, Chebil A (2008) Accounting for single and aggregated forest incomes: application to public cork oak forests in Jerez (Spain) and Iteimia (Tunisia). Ecol Econ 65:76–86

    Google Scholar 

  • Catry FX, Moreira F, Cardillo E, Pausas JG (2012) Post-fire management and restoration of southern European forests. Springer, Dordrecht, pp 195–222

    Google Scholar 

  • Ceia RS, Ramos JA (2016) Birds as predators of cork and holm oak pests. Agrofor Syst 90:159–176

    Google Scholar 

  • Chenchouni H, Abdelkrim SB, Athmane B (2008) The deterioration of the Atlas Cedar (Cedrus atlantica) in Algeria. In: International conference “adaptation of forests and forest management to changing climate with emphasis on forest health: a review of science, policies, and practices”. FAO/IUFRO, Sweden, pp 25–28

  • Chmura DJ, Anderson PD, Howe GT, Harrington CA, Halofsky JE, Peterson DL, Shaw DC, St Brad, Clair J (2011) Forest responses to climate change in the northwestern United States: ecophysiological foundations for adaptive management. For Ecol Manage 261(7):1121–1142

    Google Scholar 

  • Colangelo M, Camarero JJ, Battipaglia G, Borghetti M, De Micco V, Gentilesca T, Ripullone F (2017) A multi-proxy assessment of dieback causes in a Mediterranean oak species. Tree Physiol 37:617–631

    CAS  PubMed  Google Scholar 

  • Costa A, Pereira H, Oliveira A (2001) A dendroclimatological approach to diameter growth in adult cork-oak trees under production. Trees Struct Funct 15:438–443

    Google Scholar 

  • Costa A, Pereira H, Oliveira A (2002) Influence of climate on the seasonality of radial growth of cork oak during a cork production cycle. Ann For Sci 59:429–437

    Google Scholar 

  • Costa A, Pereira H, Madeira M (2010) Analysis of spatial patterns of oak decline in cork oak woodlands in Mediterranean conditions. Ann For Sci 67:204

    Google Scholar 

  • Delatour C (1969) Quelques observations de phytopathologie forestière faites en Tunisie. I. R. T. Var. Sci. 2:11

    Google Scholar 

  • DGF (2005) Deuxième inventaire forestier et pastoral national. Résultats sur l’échelon de Jendouba. DGF, Tunis, p 129

    Google Scholar 

  • Di Filippo A, Alessandrini A, Biondi F, Blasi S, Portoghesi L, Piovesan G (2010) Climate change and oak growth decline: dendroecology and stand productivity of a Turkey oak (Quercus cerris L.) old stored coppice in Central Italy. Ann For Sci 67:706

    Google Scholar 

  • El Hamrouni A (1992) La végétation forestière, pré-forestière et pré-steppique de la Tunisie. Université Aix—Marseille, Marseille

  • El Khorchani A, Gadbin-Henry C, Bouzid S, Khaldi A (2007) Impact de la sécheresse sur la croissance de trois espèces forestières en Tunisie (Pinus halepensis Mill., Pinus pinaster Sol. et Pinus pinea L.). Secheresse 18:113–121. https://doi.org/10.1684/sec.2007.0074

    Article  Google Scholar 

  • Emberger L (1952) Sur le quotient pluviothermique. C.R.Acad. Sci. Paris ZM, pp 2508–2510

  • Ennajah A, Guibal F, Hanchi B, Mouillot F, Garchi S (2010) Croissance radiale du chêne-liège et climat en Tunisie. Secheresse 21:34–41

    Google Scholar 

  • Ennajah A, Azri W, Sai Kachout S, Taibi K, Mouillot F, Ourcival JM (2013) Drought effects on buds growth and dynamic of Tunisian cork oak populations. Int J Agron Plant Prod 4(8):1742–1752

    Google Scholar 

  • FAO (2010a) Global forest resources assessment 2010, FAO forestry paper

  • FAO (2010b) Forests and climate change working paper 9: forests and climate change in the near east region. FAO, Rome

  • Fatichi S, Leuzinger S, Körner C (2014) Moving beyond photosynthesis: from carbon source to sink-driven vegetation modeling. New Phytol 201(4):1086–1095

    CAS  PubMed  Google Scholar 

  • Ferreira F (2000) The cork oak condition in Portugal. In: Recent advances on oak health in Europe. Selected papers from a conference held in Warsaw, Poland, 22–24 November 1999. Warsaw, Poland, pp 121–130

  • Flexas J, Bota J, Galmés J, Medrano H, Ribas-Carbó M (2006) Keeping a positive carbon balance under adverse conditions:responses of photosynthesis and respiration to water stress. Physiol Plant 127:343–352

    CAS  Google Scholar 

  • Franceschini A, Corda P, Maddau L, Secchi C, Ruiu PA (1999) Manifestations de dépérissement du chêne liège en Sardaigne (Italy). IOBC-WPRS Bull 22:1–3

    Google Scholar 

  • García de la Serrana R, Vilagrosa A, Alloza JA (2015) Pine mortality in southeast Spain after an extreme dry and warm year: interactions among drought stress, carbohydrates and bark beetle attack. Trees-Struct Funct 29:1791–1804

    Google Scholar 

  • Gardiner ES, Hodges JD (1996) Physiological, morphological and growth responses to rhizosphere hypoxia by seedlings of North American bottomland oaks. Ann Sci For 53:303–316

    Google Scholar 

  • Gentilesca T, Camarero JJ, Colangelo M, Nolè A, Ripullone F (2017) Drought-induced oak decline in the western mediterranean region: an overview on current evidences, mechanisms and management options to improve forest resilience. IForest 10:796–806

    Google Scholar 

  • Gnacadja L, Lesch AK (2009) Running dry? Climate change in drylands and how to cope with it. Oekom, Munchen

    Google Scholar 

  • Gotarredona C (1992) Estado fitosanitário de las massas forestales de Quercineas en los espacios naturales de Andalucia. In: Actas Simposio Mediterraneo Sobre Regeneration Del Monte Alcornocal. Merida, Évora, Sevilla, pp 191–195

  • Graf A, Basri E, Bakry M (1992) Cork oak decline in Morocco. In: Proceedings of an international congress “recent advances in studies on oak decline”. Selva di Fasano (Brindisi), Italy

  • Grant OM, Tronina Ł, Ramalho JC, Kurz Besson C, Lobo-Do-Vale R, Santos Pereira J, Jones HG, Chaves MM (2010) The impact of drought on leaf physiology of Quercus suber L. trees: comparison of an extreme drought event with chronic rainfall reduction. J Exp Bot 61:4361–4371

    CAS  PubMed  Google Scholar 

  • GTZ (2007) Adaptation to CC: development of a national strategy for agriculture, ecosystems and water resources in Tunisia. Tunis

  • Hasnaoui B (1992) Chênaies du Nord de la Tunisie: écologie et régénération. Université de Provence.Aix Marseille, pp 2–4

  • Hasnaoui B (1998) Régénération naturelle du chêne-liège: difficultés et propositions des solutions. Les Ann. l’INRGREF Numéro spé, pp 126–147

  • Hasnaoui F (2010) Variabilité du dépérissement du chêne-liège et du chêne zeen en Kroumirie (Nord-Ouest de la Tunisie). Les Ann. l’INRGREF Numéro Spé, pp 155–169

  • Helgerson OT (1989) Heat damage in tree seedlings and its prevention. New For 3(4):333–358

    Google Scholar 

  • Hergarten M, Liagre L, Froede-Thierfelder B (2013) Forests and climate change adaptation: a twofold approach. MENA region

  • Hsiao TC, Xu L (2000) Sensitivity of growth of roots versus leaves to water stress: biophysical analysis and relation to water transport. J Exp Bot 51:1595–1616

    CAS  PubMed  Google Scholar 

  • Innes J, Joyce LA, Kellomäki S, Louman B, Ogden A, Thompson I, Parrotta J, Ayres M, Ong C, Santoso H, Sohngen B, Wreford A (2009) Management for adaptation. In: Seppälä R, Buck A, Katila P (eds) Adaptation of forests and people to climate change: a global assessment report. Prepared by the global forest expert panel on adaptation of forests to climate change. IUFRO World Series vol 22, p 224

  • INS (2007) Annuaire Statistique de la Tunisie 2007. Tunis

  • IPCC (2013) Climate change 2013: the physical science basis, contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jablonski LM, Wang X, Curtis PS (2002) Plant reproduction under elevated CO2 conditions: a meta-analysis of reports on 79 crop and wild species. New Phytol 156:9–26

    Google Scholar 

  • Jazzar L, Rzigui T, Ben Fradj R, Touhami I, Nasr Z (2019) Leaf gas exchange variation under summer drought in Tunisian cork oak from geographically central and marginal populations. Euro-Mediterr J Environ Integr. 4:17. https://doi.org/10.1007/s41207-019-0105-1

    Article  Google Scholar 

  • Khaine I, Woo SY (2015) An overview of interrelationship between climate change and forests. Forest Sci. Technol 11:11–18

    Google Scholar 

  • Khaldi A (2001) Bilan actualisé de la régénération du chêne-liège en Kroumirie-Mogods (Tunisie). In: International meeting on silviculture of cork oak (Quercus Suber L.) and Cedar (Cedrus Atlantica). Rabat, Maroc, pp 133–135

  • Klein T, Zeppel MJB, Anderegg WRL, Bloemen J, De Kauwe MG, Hudson P, Ruehr NK, Powell TL, von Arx G, Nardini A (2018) Xylem embolism refilling and resilience against drought-induced mortality in woody plants: processes and trade-offs. Ecol Res 33:839–855

    CAS  Google Scholar 

  • Körner C, Basler D (2010) Phenology under global warming. Science 327(5972):1461–1462

    PubMed  Google Scholar 

  • Körner C, Sarris D, Christodoulakis D (2005) Long-term increase in climatic dryness in the East-Mediterranean as evidenced for the island of Samos. Reg Environ Chang 5:27–36

    Google Scholar 

  • Kreuzwieser J, Papadopoulou E, Rennenberg H (2004) Interaction of flooding with carbon metabolism of forest trees. Plant Biol 6(3):299–306

    CAS  PubMed  Google Scholar 

  • Kurepin LV, Stangl ZR, Ivanov AG, Bui V, Mema M, Hüner NPA, Öquist G, Way D, Hurry V (2018) Contrasting acclimation abilities of two dominant boreal conifers to elevated CO2 and temperature. Plant, Cell Environ 41:1331–1345

    CAS  Google Scholar 

  • Lee SY, Woo SY, Nasr Z, Zineddine M, Khaldi A, Rejeb MN (2011) Can net photosynthesis and water relations provide a clue on the forest decline of Quercus suber in North Tunisia? African. J Biotechnol 10:1637–1639

    Google Scholar 

  • Lloret F, Escudero A, Iriondo JM, Martínez-Vilalta J, Valladares F (2012) Extreme climatic events and vegetation: the role of stabilizing processes. Glob Chang Biol 18(3):797–805

    Google Scholar 

  • Luciano P, Prota R (1995) Insect pests in Sardinia cork oak forests. IOBC WPRS Bull 18:1–7

    Google Scholar 

  • Mannai Y, Ezzine O, Nouira S, Ben Jamâa M (2015) First report of Erannis defoliaria on Quercus sp. in North West of Tunisia, Tunis. J Plant Prot 10:75–78

    Google Scholar 

  • Martínez-Vilalta J, Piñol J (2002) Drought-induced mortality and hydraulic architecture in pine populations of the NE Iberian Peninsula. For Ecol Manage 161:247–256

    Google Scholar 

  • McCarthy HR, Oren R, Johnsen KH, Gallet-Budynek A, Pritchard DG, Cook CW, Ladeau SL, Jackson RB, Finzi AC (2010) Re-assessment of plant carbon dynamics at the Duke free-air CO2 enrichment site: interactions of atmospheric [CO2] with nitrogen and water availability over stand development. New Phytol 185:514–528

    CAS  PubMed  Google Scholar 

  • McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178(4):719–739

    PubMed  Google Scholar 

  • Mirault J (1996) État de santé des forêts méditerranéennes françaises: cas du chêne-liège, du Pin d’alep et du cèdre de l’Atlas. In: Colloque Sur Le dépérissement des forêts: ésumés des communications. Rabat, Maroc

  • Mok HF, Arndt SK, Nitschke CR (2012) Modelling the potential impact of climate variability and change on species regeneration potential in the temperate forests of South Eastern Australia. Glob Chang Biol 18:1053–1072

    Google Scholar 

  • Nageleisen LM (1993) Les dépérissements d’essences feuillues en France. Rev For Française XLV(6):605

    Google Scholar 

  • Nasr Z, Woo SY, Zineddine M, Khaldi A, Rejeb MN (2011) Sap flow estimates of Quercus suber according to climatic conditions in north Tunisia. Afr J Agric Res 6:4705–4710

    Google Scholar 

  • Niinemets Ü (2001) Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology 82:453–469

    Google Scholar 

  • Niinemets Ü, Cescatti A, Rodeghiero M, Tosens T (2005) Leaf internal diffusion conductance limits photosynthesis more strongly in older leaves of Mediterranean evergreen broad-leaved species. Plant, Cell Environ 28:1552–1566

    Google Scholar 

  • Nilsen ET, Orcutt DM (1996) The physiology of plants under stress. Wiley, New York, p 704

    Google Scholar 

  • Norby RJ, Luo YQ (2004) Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world. New Phytol 162:281–293

    Google Scholar 

  • Norby RJ, Ofle K, Curtis PS, Badeck FW, Huth A, Hurtt GC, Kohyama T, Penuelas J (2001) Aboveground growth and competition in forest gap models: an analysis for studies of climatic change. Clim Change 51:415–447

    Google Scholar 

  • Nsibi R (2005) Sénescence et rajeunissement des Subéraies de Tabarka-Aïn Draham avec approches écologiques et biotechnologiques. Faculté des Sciences de Tunis

  • O’Brien MJ, Engelbrecht BMJ, Joswig J, Pereyra G, Schuldt B, Jansen S, Kattge J, Landhäusser SM, Levick SR, Preisler Y, Väänänen P, Macinnis-Ng C (2017) A synthesis of tree functional traits related to drought-induced mortality in forests across climatic zones. J Appl Ecol 54(6):1669–1686

    Google Scholar 

  • Ogaya R, Peñuelas J, Asensio D, Llusià J (2011) Chlorophyll fluorescence responses to temperature and water availability in two co-dominant Mediterranean shrub and tree species in a long-term field experiment simulating climate change. Environ Exp Bot 73:89–93

    CAS  Google Scholar 

  • Olszyk D, Wise C, VanEss E, Apple M, Tingey D (1998) Phenology and growth of shoots, needles, and buds of Douglas-fir seedlings with elevated CO2 and (or) temperature. Can J Bot 76:1991–2001

    Google Scholar 

  • ONAGRI (2004) Les forêts et la prévention des incendies de l’été. Tunis

  • Parada T, Lusk CH (2011) Patterns of tree seedling mortality in a temperate-mediterranean transition zone forest in Chile, Gayana. Botánica 68:236–243

    Google Scholar 

  • Pérez-Sierra A, López-García C, León M, García-Jiménez J, Abad-Campos P, Jung T (2013) Previously unrecorded low-temperature Phytophthora species associated with Quercus decline in a Mediterranean forest in eastern Spain. For Pathol 43:331–339

    Google Scholar 

  • Pilcher JR, Gray B (1982) The relationships between oak tree growth and climate in Britain. J Ecol 70:297. https://doi.org/10.2307/2259880

    Article  Google Scholar 

  • Qaderi MM, Martel AB, Dixon SL (2019) Environmental factors influence plant vascular system and water regulation. Plants 8:65

    CAS  PubMed Central  Google Scholar 

  • Ruiu PA, Sechi C, Linaldeddu BT, Franceschini A (2005) Analyse de l’incidence du dépérissement sur les chênes-lièges non démasclés et de production. IOBC-WPRS Bull 28:59–63

    Google Scholar 

  • Rzigui T, Jazzar L, Ben Baaziz K, Fkiri S, Nasr Z (2018) Drought tolerance in cork oak is associated with low leaf stomatal and hydraulic conductances. iForest 11:728–733. https://doi.org/10.3832/ifor2749-011

    Article  Google Scholar 

  • Sanchez G, Garcia P (2007) The status of cork and holm oak stands and forests Spain. In: DGRF, FAO, WWF (eds) The vitality of cork and holm oak stands and forests-current situation, state of knowledge and actions to take. Rep. Conf. Meet. Evora, Portugal

  • Saxe H, Ellsworth DS, Heath J (1998) Tree and forest functioning in an enriched CO2 atmosphere. New Phytol 139:395–436

    Google Scholar 

  • Seidl R, Thom D, Kautz M, Martin-Benito D, Peltoniemi M, Vacchiano G, Wild J, Ascoli D, Petr M, Honkaniemi J, Lexer MJ, Trotsiuk V, Mairota P, Svoboda M, Fabrika M, Nagel TA, Reyer CPO (2017) Forest disturbances under climate change. Nat Clim Chang 7(6):395–402

    PubMed  PubMed Central  Google Scholar 

  • Selmi M (1985) Différenciation des sols et fonctionnement des écosystèmes sur grés numidiens de Kroumirie (Tunisie). Ecologie de la subéraie zenaie, Université de Nancy, Tunisa, p 200

    Google Scholar 

  • Selmi K (2006) Utilisation des données et résultats de l’inventaire forestier national pour la gestion des forêts de chêne-liège en Tunisie. Tunis, pp 5–8

  • Siwecki R, Ufnalski K (1998) Review of oak stand decline with special reference to the role of drought in Poland. Eur J For Pathol 28:99–112

    Google Scholar 

  • Smith TM, Smith RL (2009) Chapter 29, global climat change. In: Elements of ecology. Pearson Benjamin Cummings, San Francisco, USA, pp 622–646

  • Sousa EMR (1996) Contribution à l’étude de la biologie de population de Platypus cylindrus (Coleoptera, Platypodidae) dans les peuplements de chêne-liège au Portugal. Thèse de Doctorat, Université Claude Bernard, Lyon

  • Stiti B, Sebei H, Khaldi A (2005) Growth regeneration and analysis of cork oak (Quercus suber) trees in the Ain Snoussi forest, Tunisia. IOBC/WPRS Bull 28(8):237–244

    Google Scholar 

  • Stoneman GL (1994) Ecology and physiology of establishment of eucalypt seedlings from seed: A review. Aust For 57:11–30. https://doi.org/10.1080/00049158.1994.10676109

    Article  Google Scholar 

  • Tingey DT, Phillips DL, Johnson MG (2000) Elevated CO2 and conifer roots: effects on growth, life span and turnover. New Phytol 147:87–103

    CAS  Google Scholar 

  • Tlili N, Ennajah A, Loukehaich R, Ammari Y (2014) Leaf mass per area and nitrogen content in cork oak (Quercus suber L.) under a range of climatic stress (drought and temperature stress). J Biod EnviroSci 5:343–351

    Google Scholar 

  • Toledo M, Poorter L, Peña-Claros M, Alarcón A, Balcázar J, Leaño C, Licona JC, Llanque O, Vroomans V, Zuidema P, Bongers F (2011) Climate is a stronger driver of tree and forest growth rates than soil and disturbance. J Ecol 99:254–264

    Google Scholar 

  • Touchan R, Meko DM, Aloui A (2008) Precipitation reconstruction for Northwestern Tunisia from tree rings. J Arid Environ 72:1887–1896

    Google Scholar 

  • Trigo RM, Palutikof JP (2001) Precipitation scenarios over Iberia: a comparison between direct GCM output and different downscaling techniques. J Clim 14:4422–4446

    Google Scholar 

  • Tsopelas P, Angelopoulos A, Economou A, Soulioti N (2004) Mistletoe (Viscum album) in the fir forest of Mount Parnis, Greece. For Ecol Manage 202:59–65

    Google Scholar 

  • Vayreda J, Martinez-Vilalta J, Gracia M, Retana J (2012) Recent climate changes interact with stand structure and management to determine changes in tree carbon stocks in Spanish forests. Glob Chang Biol 18:1028–1041

    Google Scholar 

  • Vennetier M, Gadbin-Henry C, Guibal F, Liang E, Taahbet A, Vilà B (2007) Impact of climate change on pine forest productivity and on the shift of a bioclimatic limit in a Mediterranean area. Options Méditerranéennes, Série A, CIHEAM/IAMB, Bari, Italy 8, pp 189–197

  • Vose JM, Peterson DL, Patel-Weynand T (2012) Effects of climatic variability and change on forest ecosystems: a comprehensive science synthesis for the US forest sector. For Serv Gen Tech. Rep. PNW-GTR-87, pp 1–265

  • Wang T, Hamann A, Yanchuk A, O’neill GA, Aitken SN (2006) Use of response functions in selecting lodgepole pine populations for future climates. Glob Chang Biol 12:2404–2416

    Google Scholar 

  • White PS, Pickett STA (1985) Natural disturbance and patch dynamics. In: The ecology of natural disturbance and patch dynamics. Academic Press, pp 3–13

  • Williams AP, Allen CD, Macalady AK, Griffin D, Woodhouse CA, Meko DM, Swetnam TW, Rauscher SA, Seager R, Grissino-Mayer HD, Dean JS, Cook ER, Gangodagamage C, Cai M, Mcdowell NG (2013) Temperature as a potent driver of regional forest drought stress and tree mortality. Nat Clim Chang 3:292–297. https://doi.org/10.1038/nclimate1693

    Article  Google Scholar 

  • WMO (1992) International meteorological vocabulary, 2nd ed, World Meteorological Organization Technical Publication No. 182. World Meteorological Organization

  • Zribi L, Mouillot F, Guibal F, Rejeb S, Rejeb MN, Gharbi F (2016a) Deep soil conditions make mediterranean Cork Oak stem growth vulnerable to autumnal rainfall decline in Tunisia. Forests 7:245. https://doi.org/10.3390/f7100245

    Article  Google Scholar 

  • Zribi L, Chaar H, Khaldi A, Hanchi B, Mouillot F, Gharbi F (2016b) Estimate of biomass and carbon pools in disturbed and undisturbed oak forests in Tunisia. For Syst 25:408–415

    Google Scholar 

Download references

Acknowledgements

Thanks to all authors of the original studies included in this analysis. Also we thank the journal referees for providing constructive comments resulting in the improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Issam Touhami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding: This work was funded by the National Research Institute for Rural Engineering, Waters, and Forestry, Tunisia.

The online version is available at http://www.springerlink.com

Corresponding editor: Chai Ruihai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Touhami, I., Chirino, E., Aouinti, H. et al. Decline and dieback of cork oak (Quercus suber L.) forests in the Mediterranean basin: a case study of Kroumirie, Northwest Tunisia. J. For. Res. 31, 1461–1477 (2020). https://doi.org/10.1007/s11676-019-00974-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-019-00974-1

Keywords

Navigation