Skip to main content
Log in

An experimental study exploring the influencing factors for ultrasonic-assisted extraction of flavonoid compounds from leaves of Amorpha fruticosa L.

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

In this paper, the ultrasonic-assisted extraction process of flavonoid compounds from leaves of Amorpha fruticosa is optimized. In single factor experiments, solid/liquid ratios, ultrasonic power, ethanol concentrations and extraction cycles were experimental factors. Box–Behnken central composite design and RSM analyzed the effects of the four factors on the yield of total flavonoids. The optimal extraction parameters were solid/liquid ratio 1:50 g/mL, ultrasonic power 316 W, ethanol concentration 50%, 4 extraction cycles. In the optimized condition, the estimated value of the regression model was 66.6456 mg/g while the measured value was 66.4329 mg/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Azimova SS, Glushenkova AI, Vinogradova VI (2012) Lipids, lipophilic components and essential oils from plant sources. Springer, Berlin

    Book  Google Scholar 

  • Balentine DA, Wiseman SA, Bouwens LCM (1998) Chemistry of tea flavonoids. Crit Rev Food Sci Nutr 37(8):693–704

    Article  Google Scholar 

  • Bashi DS, Rezaei K, Rajaei A, Karimkhani MM (2012) Optimization of ultrasound-assisted extraction of phenolic compounds from yarrow (Achillea beibrestinii) by response surface methodology. Food Sci Biotechnol 21(4):1005–1011

    Article  CAS  Google Scholar 

  • Cui DL, Yu-Xin MA, Shi G, Fan MH, Wei DU, Zhang M (2010) Ecophysiological responses of Amorpha fruticosa L. seeding leaves to long-term drought gradient treatment. Res Soil Water Conserv 17(2):167–178

    Google Scholar 

  • Devi KP, Rajavel T, Habtemariam S, Nabavi SF, Nabavi SM (2015) Molecular mechanisms underlying anticancer effects of myricetin. Life Sci 142:19–25

    Article  CAS  PubMed  Google Scholar 

  • Feng J, Chen X, Wang Y, Du Y, Sun Q, Zang W (2015) Myricetin inhibits proliferation and induces apoptosis and cell cycle arrest in gastric cancer cells. Mol Cell Biochem 408(1–2):163–170

    Article  CAS  PubMed  Google Scholar 

  • Hou W, Zhang W, Chen G, Luo Y (2016) Optimization of extraction conditions for maximal phenolic, flavonoid and antioxidant activity from Melaleuca bracteata leaves using the response surface methodology. PLoS One 11(9):139

    Article  CAS  Google Scholar 

  • Hui T, Yong HC (2014) Optimization of ultrasonic-assisted extraction of bioactive alkaloid compounds from rhizoma coptidis using response surface methodology. Food Chem 142(1):299–305

    Google Scholar 

  • Jia Z, Tang M, Wu J (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64(4):555–559

    Article  Google Scholar 

  • Jiang B, Le L, Pan H, Hu K, Xu L, Xiao P (2014) Dihydromyricetin ameliorates the oxidative stress response induced by methylglyoxal via the AMPK/GLUT4 signaling pathway in PC12 cells. Brain Res Bull 109:117–126

    Article  CAS  PubMed  Google Scholar 

  • Kang S, Zhang L, Song X, Zhang S, Liu X, Liang Y (2001) Runoff and sediment loss responses to rainfall and land use in two agricultural catchments on the loess plateau of china. Hydrol Process 15(6):977–988

    Article  Google Scholar 

  • Khoddami A, Wilkes MA, Roberts TH (2013) Techniques for analysis of plant phenolic compounds. Molecules 18(2):2328–2375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Shu Y, Zhang Q, Liu B, Xia J, Qiu M (2014) Dihydromyricetin induces apoptosis and inhibits proliferation in hepatocellular carcinoma cells. Oncol Lett 8(4):1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morelli LL, Prado MA (2012) Extraction optimization for antioxidant phenolic compounds in red grape jam using ultrasound with a response surface methodology. Ultrason Sonochem 19(6):1144–1149

    Article  CAS  PubMed  Google Scholar 

  • Muñiz Márquez DB, Martínez Ávila GC, Wong Paz JE, Belmares Cerda R, Rodríguez Herrera R, Aguilar CN (2013) Ultrasound-assisted extraction of phenolic compounds from Laurus nobilis L. and their antioxidant activity. Ultrason Sonochem 20(5):1149–1154

    Article  CAS  PubMed  Google Scholar 

  • Qi S, Xin Y, Guo Y, Diao Y, Kou X, Luo L, Yin Z (2012) Ampelopsin reduces endotoxic inflammation via repressing ROS-mediated activation of PI3K/Akt/NF-κB signaling pathways. Int Immunopharmacol 12(1):278–287

    Article  CAS  PubMed  Google Scholar 

  • Ramić M, Vidović S, Zeković Z, Vladić J, Cvejin A, Pavlić B (2015) Modeling and optimization of ultrasound-assisted extraction of polyphenolic compounds from Aronia melanocarpa by products from filter-tea factory. Ultrason Sonochem 23:360–368

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues S, Pinto GA, Fernandes FA (2008) Optimization of ultrasound extraction of phenolic compounds from coconut (Cocos nucifera) shell powder by response surface methodology. Ultrason Sonochem 15(1):95–100

    Article  CAS  PubMed  Google Scholar 

  • Salar BD, Attaran DS, Fazly BBS, Farhad K, Vahid S, Ali M (2016) Evaluation, prediction and optimization the ultrasound-assisted extraction method using response surface methodology: antioxidant and biological properties of Stachys parviflora L. Iran J Basic Med Sci 19(5):529–541

    Google Scholar 

  • Shi L, Zhang T, Liang X (2015) Dihydromyricetin improves skeletal muscle insulin resistance by inducing autophagy via the AMPK signaling pathway. Mol Cell Endocrinol 409:92–102

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Wu Y, Chen G, Yue W, Liang Q, Wu Q (2013) Optimisation of ultrasound assisted extraction of phenolic compounds from sparganii rhizoma with response surface methodology. Ultrason Sonochem 20(3):846–854

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Wu B, Wan J, Zhang Y, Zhu JD, Zhou Y, Mi MT (2015) Rattan tea extracts improve insulin resistance in type 2 diabetes rats. J Third Mil Med Univ 37:454–458

    CAS  Google Scholar 

  • Xiang CG, Xiang N, Huang CL, Sun HB, Wen Fang LI (2011) Optimization of Microwave extraction of flavonoids from Robinia pseudoacacia L. flowers using response surface methodology. Food Sci 32(22):32–36

    CAS  Google Scholar 

  • Xu W, Chu K, Li H, Zhang Y, Zheng H, Chen R, Chen L (2012) Ionic liquid based microwave-assisted extraction of flavonoids from Bauhinia championii Benth. Molecules 17(12):14323–14335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye L, Wang H, Duncan SE, Eigel WN, Okeefe SF (2015) Antioxidant activities of Vine Tea (Ampelopsis grossedentata) extract and its major component dihydromyricetin in soybean oil and cooked ground beef. Food Chem 172:416–422

    Article  CAS  PubMed  Google Scholar 

  • Ying L, Xu P, Huang S, Wang Y (2011) Antioxidant activity of bioactive compounds extracted from Ampelopsis grossedentata leaves by optimized supercritical carbon dioxide. J Med Plants Res 5(17):4373–4381

    CAS  Google Scholar 

  • Zeng CH, Yang K, Xu MG, Wu G, Zhong ZG (2013) Antibacterial mechanisms of total flavonoids from Ampelopsis grossedentata on Staphylococcus aureus. China Exp Tradit Med Formul 19:249–252

    CAS  Google Scholar 

  • Zhang HF, Yang XH, Wang Y (2011) Microwave assisted extraction of secondary metabolites from plants: current status and future directions. Trends Food Sci Technol 22(12):672–688

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinghong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding: This work was supported by Central University Basic Research Funds (2572014CA27), (2572018DB01) and Heilongjiang Province Natural Fund (C200913).

The online version is available at http://www.springerlink.com.

Corresponding editor: Chai Ruihai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, J., Muhammad, S., Chen, A. et al. An experimental study exploring the influencing factors for ultrasonic-assisted extraction of flavonoid compounds from leaves of Amorpha fruticosa L.. J. For. Res. 30, 1735–1741 (2019). https://doi.org/10.1007/s11676-019-00931-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-019-00931-y

Keywords

Navigation