Skip to main content
Log in

Matrine inhibits mycelia growth of Botryosphaeria dothidea by affecting membrane permeability

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Matrine is a promising botanical antifungal; however, the mechanism underlying the antifungal activity is yet limited. We studied the antifungal activity of matrine and the underlying mechanism in Botryosphaeria dothidea as a model strain. Matrine strongly inhibited mycelial growth of B. dothidea in a dose-dependent manner. Matrine-treated B. dothidea showed morphological and ultrastructural alterations, including shriveled hyphae, plasmolysis, and leakage of cytoplasm related to cell membrane deterioration. In addition, matrine caused significantly high conductivity and absorbance (260 nm) in extracellular matrices and low lipid contents in B. dothidea, indicating increased membrane permeability. Lipid peroxidation showed that matrine resulted in increased malondialdehyde content while enhancing the generation of reactive oxygen species and the activities of superoxide dismutase, catalase, and peroxidase. These results showed that matrine inhibited the mycelial growth of B. dothidea by enhancing cell membrane permeability via membrane lipid peroxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Chowhan N, Singh HP, Batish DR, Kaur S, Ahuja N, Kohli RK (2013) Beta-Pinene inhibited germination and early growth involves membrane peroxidation. Protoplasma 250:691–700

    Article  CAS  PubMed  Google Scholar 

  • Dai DJ, Wang HD, Wang YP, Zhang CQ (2017) Management of Chinese hickory (Carya cathayensis) trunk canker through effective fungicide application programs and baseline sensitivity of Botryosphaeria dothidea to trifloxystrobin. Australas Plant Pathol 46:1–8

    Article  CAS  Google Scholar 

  • Dou S, Liu S, Xu X, OuYang Q, Tao N (2017) Octanal inhibits spore germination of Penicillium digitatum involving membrane peroxidation. Protoplasma 254:1539–1545

    Article  CAS  PubMed  Google Scholar 

  • Dutta RK, Nenavathu BP, Gangishetty MK, Reddy AV (2012) Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation. Colloids Surf B Biointerfaces 94:143–150

    Article  CAS  PubMed  Google Scholar 

  • Ferreira GF, Baltazar LM, Santos JR, Monteiro AS, Fraga LA, Resende-Stoianoff MA, Santos DA (2013) The role of oxidative and nitrosative bursts caused by azoles and amphotericin B against the fungal pathogen Cryptococcus gattii. J Antimicrob Chemother 68:1801–1811

    Article  CAS  PubMed  Google Scholar 

  • Fu Q, Fang Q, Feng B, Sun S, Du W, Amut E, Xiao A, Chang C (2011) Matrine-imprinted monolithic stationary phase for extraction and purification of matrine from Sophorae flavescentis Ait. J Chromatogr B 879:894–900

    Article  CAS  Google Scholar 

  • Gao HY, Li GY, Lou MM, Li XY, Wei XY, Wang JH (2012) Hepatoprotective effect of matrine salvianolic acid B salt on carbon tetrachloride-induced hepatic fibrosis. J Inflamm (Lond) 9:16

    Article  CAS  Google Scholar 

  • Gao T, Zhou H, Zhou W, Hu L, Chen J, Shi Z (2016) The fungicidal activity of thymol against Fusarium graminearum via inducing lipid peroxidation and disrupting ergosterol biosynthesis. Molecules 21(6):770

    Article  CAS  PubMed Central  Google Scholar 

  • Heaton NS, Randall G (2011) Multifaceted roles for lipids in viral infection. Trends Microbiol 19:368–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helal GA, Sarhan MM, Abu SA, Abou EE (2007) Effects of Cymbopogon citratus L. essential oil on the growth, morphogenesis and aflatoxin production of Aspergillus flavus ML2-strain. J Basic Microbiol 47:5–15

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Xu H (2016) Matrine: bioactivities and structural modifications. Curr Top Med Chem 16(28):3365–3378

    Article  CAS  PubMed  Google Scholar 

  • Jaikua W, Kueakhai P, Chaithirayanon K, Tanomrat R, Wongwairot S, Riengrojpitak S, Sobhon P, Changklungmoa N (2016) Cytosolic superoxide dismutase can provide protection against Fasciola gigantica. Acta Trop 162:75–82

    Article  CAS  PubMed  Google Scholar 

  • Khan H, Mubarak MS, Amin S (2017) Antifungal potential of alkaloids as an emerging therapeutic target. Curr Drug Targets 18:1825–1835

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Xu Y, Ji W, Li X, Sun B, Gao Q, Su C (2014) Anti-tumor activities of matrine and oxymatrine: literature review. Tumor Biol 35:5111–5119

    Article  CAS  Google Scholar 

  • Maness PC, Smolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby WA (1999) Bactericidal activity of photocatalytic TiO(2) reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol 65:4094–4098

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Finley EJ, Gavin CE, Aschner M, Gunter TE (2013) Manganese neurotoxicity and the role of reactive oxygen species. Free Radic Biol Med 62:65–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan JL, Yang Y, Zhang R, Yao HW, Ge KK, Zhang MY, Ma L (2017) Enrichment of chelidonine from Chelidonium majus L. using macroporous resin and its antifungal activity. J Chromatogr B Anal Technol Biomed Life Sci 1070:7–14

    Article  CAS  Google Scholar 

  • Paul S, Dubey RC, Maheswari DK, Sun CK (2011) Trachyspermum ammi (L.) fruit essential oil influencing on membrane permeability and surface characteristics in inhibiting food-borne pathogens. Food Control 22:725–731

    Article  CAS  Google Scholar 

  • Sant DG, Tupe SG, Ramana CV, Deshpande MV (2016) Fungal cell membrane-promising drug target for antifungal therapy. J Appl Microbiol 121:1498–1510

    Article  CAS  PubMed  Google Scholar 

  • Shao J, Wang T, Yan Y, Shi G, Cheng H, Du W, Wang C (2014) Matrine reduces yeast-to-hypha transition and resistance of a fluconazole-resistant strain of Candida albicans. J Appl Microbiol 117:618–626

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Liao K, Hang C, Wang D (2017) Honokiol induces reactive oxygen species-mediated apoptosis in Candida albicans through mitochondrial dysfunction. PLoS ONE 12:e172228

    Google Scholar 

  • Tada R, Latge JP, Aimanianda V (2013) Undressing the fungal cell wall/cell membrane–the antifungal drug targets. Curr Pharm Des 19:3738–3747

    Article  CAS  PubMed  Google Scholar 

  • Tao N, Jia L, Zhou H (2014a) Anti-fungal activity of Citrus reticulata Blanco essential oil against Penicillium italicum and Penicillium digitatum. Food Chem 153:265–271

    Article  CAS  PubMed  Google Scholar 

  • Tao N, Ouyang Q, Jia L (2014b) Citral inhibits mycelial growth of Penicillium italicum by a membrane damage mechanism. Food Control 41:116–121

    Article  CAS  Google Scholar 

  • Wang T, Shi G, Shao J, Wu D, Yan Y, Zhang M, Cui Y, Wang C (2015) In vitro antifungal activity of baicalin against Candida albicans biofilms via apoptotic induction. Microb Pathog 87:21–29

    Article  CAS  PubMed  Google Scholar 

  • Yoon MY, Cha B, Kim JC (2013) Recent trends in studies on botanical fungicides in agriculture. Plant Pathol J 29:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang CQ, Xu BC (2011) First report of canker on pecan (Carya cathayensis) caused by Botryosphaeria dothidea in China. Plant Dis 95:1319

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Liu ZY, Li YY, Luo Y, Liu ML, Dong HY, Wang YX, Liu Y, Zhao PT, Jin FG, Li ZC (2011) Antiinflammatory effects of matrine in LPS-induced acute lung injury in mice. Eur J Pharm Sci 44:573–579

    Article  CAS  PubMed  Google Scholar 

  • Zhong BZ, Chao-Juna LU, Sun XD, Qin WQ, Peng ZQ (2010) Bio-activity of botanical pesticides on Brontispa longissima Gestro in laboratory. Agrochemicals 12:924–926

    Google Scholar 

  • Zhou H, Tao N, Jia L (2014) Antifungal activity of citral, octanal and α-terpineol against Geotrichum citri-aurantii. Food Control 37:277–283

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I am grateful to all my colleagues that assisted in writing this thesis, particularly my supervisor, Dr. Ling Ma, who offered me valuable suggestions in my academic study.

Author information

Authors and Affiliations

Authors

Contributions

Jialiang Pan and Xin Hao are equal Contribution to this paper.

Corresponding authors

Correspondence to Ling Ma or Wei Ma.

Additional information

Project funding: The project was fully funded by the Special Fund for Forest-Scientific Research in the Public Interest (No. 201304403-4) and the Fundamental Research Funds for the Central Universities (2572015AA25).

The online version is available at http://www.springerlink.com

Corresponding editor: Zhu Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, J., Hao, X., Yao, H. et al. Matrine inhibits mycelia growth of Botryosphaeria dothidea by affecting membrane permeability. J. For. Res. 30, 1105–1113 (2019). https://doi.org/10.1007/s11676-019-00883-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-019-00883-3

Keywords

Navigation