Skip to main content

Advertisement

Log in

Green synthesis of Chlorin e6 and tests of its photosensitive bactericidal activities

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Phototoxic treatments of pathogenic bacteria and fungi of trees induce oxidative damage that is preferable to toxic chemical treatment. Here, we used green methods to synthesize Chlorin e6 from chlorophyll a, which was extracted from crude silkworm excrement using concentrated (strong) alkali hydrolysis and acidification. The photosensitive bactericidal activities of the new chlorin were tested in vitro, and possible mechanisms of action are discussed. The results showed that Chlorin e6 can be light-activated to have bactericidal activity against Escherichia coli, Bacillus subtilis and Fusarium oxysporum, but it had little bactericidal effect in the dark. This kind of chlorin compounds has great potential as a natural phototoxic antimicrobial compound to control harmful bacteria on the leaves in forestry systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Golab J (2011) Photodynamic therapy of cancer: an update. Ca A Cancer J Clin 61:250–281

    Article  Google Scholar 

  • Alves E, Faustino MAF, Neves MGPMS, Cunhaa Â, Nadais H, Almeida A (2015) Potential applications of porphyrins in photodynamic inactivation beyond the medical scope. J Photochem Photobiol C Photochem Rev 22:34–57

    Article  CAS  Google Scholar 

  • Arenas Y, Monro S, Shi G, Mandel A, McFarland S, Lilge L (2013) Photodynamic inactivation of staphylococcus aureus and methicillin-resistant staphylococcus aureus with Ru(II)-based type I/type II photosensitizers. Photodiag Photodyn Ther 10:615–625

    Article  CAS  Google Scholar 

  • Baier J, Maisch T, Regensburger J, Loibl M, Vasold R, Baumler W (2007) Time dependence of singlet oxygen luminescence provides an indication of oxygen concentration during oxygen consumption. J Biomed Opt 12:064008–7

    Article  Google Scholar 

  • Broekgaarden M, Weijer R, van Gulik TM, Hamblin MR, Heger M (2015) Tumor cell survival pathways activated by photodynamic therapy: a molecular basis for pharmacological inhibition strategies. Cancer Meta Rev 34:643–690

    Article  CAS  Google Scholar 

  • Brown SB, Brown EA, Walker I (2004) The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol 5:497–508

    Article  CAS  Google Scholar 

  • Caruso E, Banfi S, Barbieri P, Leva B, Orlandi VT (2012) Synthesis and antibacterial activity of novel cationic BODIPY photosensitizers. J Photochem Photobiol B Biol 114:44–51

    Article  CAS  Google Scholar 

  • Carvalho CMB, Alves E, Costa L, Tome JPC, Faustino MAF, Neves MGPMS, Tome AC, Cavaleiro JAS, Almeida A, Cunha A, Lin Z, Rocha J (2010) Functional cationic nanomagnet—porphyrin hybrids for the photoinactivation of microorganisms. ACS Nano 4:7133–7140

    Article  CAS  Google Scholar 

  • Chee CF, Lee HB, Ong HC, Ho ASH (2005) Photocytotoxic pheophorbide-related compounds from Aglaonema simplex. Chem Biodiv 2:1648–1655

    Article  CAS  Google Scholar 

  • Cheng HH, Wang HK, Ito J, Bastow KF, Tachibana Y, Nakanishi Y, Xu ZH, Luo TY, Lee KH (2001) Cytotoxic pheophorbide-related compounds from clerodendrum calamitosum and C. cyrtophyllum. J Nat Prod 64:915–919

    Article  CAS  Google Scholar 

  • Dai TH, Tegos GP, Lu ZS, Huang LY, Zhiyentayev T, Franklin MJ, Baer DG, Hamblin MR (2009) Photodynamic therapy for Acinetobacter baumannii burn infections in mice. Antimicrob Agents Chemother 53:3929–3934

    Article  CAS  Google Scholar 

  • Gallagher WM, Allen LT, Kenna T, Hall M, Gorman A, Killoran J, O’Shea DF (2005) A potent nonporphyrin class of photodynamic therapeutic agent: cellular localisation, cytotoxic potential and influence of hypoxia. Br J Cancer 92:1702–1710

    Article  CAS  Google Scholar 

  • Hamblin MR (2016) Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes. Curr Opin Microbiol 33:67–73

    Article  CAS  Google Scholar 

  • Kato H, Furukawa K, Sato M, Okunaka T, Kusunoki Y, Kawahara M, Fukuoka M, Miyazawa T, Yana T, Matsui K, Shiraishi T, Horinouchi H (2003) Phase II clinical study of photodynamic therapy using mono-L-aspartyl chlorin e6 and diode laser for early superficial squamous cell carcinoma of the lung. Lung Cancer 42:103–111

    Article  Google Scholar 

  • Kim K, Yoshizato M, Sasaki S, Tamiaki H (2016) Synthesis of chlorophyll derivatives possessing an S-substituted thiomethyl group at the 3-position and their optical properties. Tetrahedron 72:504–511

    Article  CAS  Google Scholar 

  • Kochevar IE, Redmond RW (2000) Photosensitized production of singlet oxygen. Methods Enzymol 319:20–28

    Article  CAS  Google Scholar 

  • Levy SB, Marshall B (2004) Antibacterial resistance worldwide: causes, challenges and responses. Nat Med 10S:S122–S129

    Article  Google Scholar 

  • Maisch T (2015) Resistance in antimicrobial photodynamic inactivation of bacteria. Photochem Photobiol Sci 14:1518–1526

    Article  CAS  Google Scholar 

  • Moan J, Peng Q (2003) An outline of the hundred-year history of PDT. Anticancer Res 23:3591–3600

    PubMed  Google Scholar 

  • Nyman ES, Hynninen PH (2004) Research advances in the use of tetrapyrrolic photosensitizers for photodynamic. Therapy Photobiol B Biol 73:1–28

    Article  CAS  Google Scholar 

  • Okai Y, Higashiokai K (1997) Potent anti-inflammatory activity of peophytin a derived from edible green alga, enteromorpha prolifera (Sujiao-nori). Int J Immunopharm 19:355–358

    Article  CAS  Google Scholar 

  • Park W, Bae BC, Na K (2016) A highly tumor-specific light-triggerable drug carrier responds to hypoxic tumor conditions for effective tumor treatment. Biomaterials 77:227–234

    Article  CAS  Google Scholar 

  • Ratnoglik SL, Aoki C, Sudarmono P, Komoto M, Deng L, Shoji I, Fuchino H, Kawahara N, Hotta H (2014) Antiviral activity of extracts from Morinda citrifolia leaves and chlorophyll catabolites, pheophorbide a and pyropheophorbide a, against hepatitis C virus. Microbiol Immunol 58:188–194

    Article  CAS  Google Scholar 

  • Roustan A, Aye M, De Meo M, Di Giorgio C (2014) Genotoxicity of mixtures of glyphosate and atrazine and their environmental transformation products before and after photoactivation. Chemosphere 108:93–100

    Article  CAS  Google Scholar 

  • Ryskova L, Buchta V, Slezak R (2010) Photodynamic antimicrobial therapy. Cent Eur J Biol 5:400–406

    CAS  Google Scholar 

  • Senge MO, Ryan AA, Letchford KA, MacGowan SA, Mielke T (2014) Chlorophylls, symmetry, chirality, and photosynthesis. Symmetry Basel 6:781–843

    Article  CAS  Google Scholar 

  • Smith KM, Gogg DA, Simpson DJ (1985) Meso substitution of chlorophyll derivatives: direct route for transformation of bacteriopheophoribides d into bacteriophorbides c. J Am Chem Soc 107:4946–4954

    Article  CAS  Google Scholar 

  • Tang PMK, Zhang DM, Xuan NHB, Tsui SKW, Waye MMY, Kong SK, Fong WP, Fung KP (2009) Photodynamic therapy inhibits p-glycoprotein mediated multidrug resistance via JNK activation in human hepatocellular carcinoma using the photosensitizer pheophorbide a. Mol Cancer 8:1476–4598

    Article  Google Scholar 

  • Temba BA, Fletcher MT, Fox GP, Harvey JJW, Sultanbawa Y (2016) Inactivation of aspergillus flavus spores by curcumin-mediated photosensitization. Food Control 59:708–713

    Article  CAS  Google Scholar 

  • Uliana MP, Pires L, Pratavieira S, Brocksom TJ, de Oliveira KT, Bagnato VS, Kurachi C (2014) Photobiological characteristics of chlorophyll a derivatives as microbial PDT agents. Photochem Photobiol Sci 13:1137–1145

    Article  CAS  Google Scholar 

  • Wainwright M (1998) Photodynamic antimicrobial chemotherapy (PACT). J Antimicro Chemo 42:13–28

    Article  CAS  Google Scholar 

  • Wang YY, Ryu AR, Jin S, Jeon YM, Lee MY (2017) Chlorin e6-mediated photodynamic therapy suppresses P. acnes-induced inflammatory response via NFκB and MAPKs signaling pathway. PLoS ONE 12:e0170599

    Article  Google Scholar 

  • Xu JT, Shanmugam S, Fu CK, Aguey-Zinsou KF, Boyer C (2016) Selective photoactivation: from a single unit monomer insertion reaction to controlled polymer architectures. J Am Chem Soc 138:3094–3106

    Article  CAS  Google Scholar 

  • Ye Y, Bruning H, Yntema D, Mayer M, Rijnaarts H (2017) Homogeneous photosensitized degradation of pharmaceuticals by using red light LED as light source and methylene blue as photosensitizer. Chem Eng J 316:872–881

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunping Hu.

Additional information

Project funding: The work was supported by Fundamental Research Funds for the Central Universities (No. DL12BA06) and Harbin Science and Technology Innovation Talent Research Special Funds (2015RAQXJ002).

The online version is available at http://www.springerlink.com

Corresponding editor: Tao Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Yang, J., Hu, C. et al. Green synthesis of Chlorin e6 and tests of its photosensitive bactericidal activities. J. For. Res. 30, 2349–2356 (2019). https://doi.org/10.1007/s11676-018-0756-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-018-0756-9

Keywords