Skip to main content
Log in

Mating system and progeny genetic diversity of Camellia oleifera ‘Ruan Zhi’

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Camellia oleifera Abel. is an important economic tree species of southern China. In this study, we evaluated the mating system and genetic diversity of a series of cultivars of C. oleifera ‘Ruan Zhi’. A total of 159 individuals from the progenies of four cultivars were tested by simple sequence repeat molecular markers. Results reveal that 11 pairs of primers showed polymorphism and their polymorphism information content value was greater than 0.73, suggesting that these primers could be used to identify the genetic diversity of open-pollinated populations. The average number of effective alleles (Ne = 4.88) was significantly different from the average number of alleles (Na = 12.18), and their distribution in the sample population was not uniform. The average observed heterozygosity (Ho = 0.96) was greater than the average expected heterozygosity (He = 0.79), and the population heterozygote was excessive. Shannon index was 1.84 and populations showed high genetic diversity. As regards to the mating system, the multilocus outcrossing rate was 0.996, and the single locus 0.866. These results indicate a high degree of outcrossing by C. oleifera ‘Ruan Zhi’. We recommend selecting individuals for high genetic gain from the progenies of cultivars because of outcrossing characteristics and genetic diversity for application to germplasm conservation and promotion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Breed MF, Ottewell KM, Gardner MG, Marklund MHK, Stead MG, Harris JBC, Lowe AJ (2012) Mating system and early viability resistance to habitat fragmentation in a bird-pollinated eucalypt. Heredity 115(2):100–107

    Article  PubMed  PubMed Central  Google Scholar 

  • Chiari L, Resende RMS, Matida ET (2010) Mating system parameters in Stylosanthes guianensis (Aubl.) Sw. based on RAPD markers. Afr J Biotech 9(36):5820–5822

    CAS  Google Scholar 

  • Deng XL, Xie GS (2008) Development of refining squeezing tea oil. Chem Bioeng 01:46–48

    Google Scholar 

  • Funda T, Chen CC, Liewlaksaneeyanawin C, Kenawy AMA, Elkassaby YA (2008) Pedigree and mating system analyses in a western larch (Larix occidentalis nutt.) experimental population. Ann For Sci 65(7):705

    Article  Google Scholar 

  • Gaiotto FA, Grattapaglia D, Vencovsky R (2003) Genetic structure, mating system, and long-distance gene flow in heart of palm (Euterpe edulis Mart.). J Hered 94(5):399

    Article  CAS  PubMed  Google Scholar 

  • Gao C, Yuan DY, Yang Y, Wang BF, Liu DM, Zou F, Tan XF (2015) Anatomical characteristics of self-incompatibility in Camellia oleifera. Scientia Silvae Sinicae 51(02):60–68

    Google Scholar 

  • Geng QF, Lian CL, Goto S, Tao JM, Kimura M, Islam MS, Hogetsu T (2010) Mating system, pollen and propagule dispersal, and spatial genetic structure in a high-density population of the mangrove tree Kandelia candel. Mol Ecol 17(21):4724–4739

    Article  CAS  Google Scholar 

  • Han YC, Teng CZ, Wahiti GR, Zhou MQ, Hu ZL, Song YC (2009) Mating system and genetic diversity in natural populations of Nelumbo nucifera (nelumbonaceae) detected by ISSR markers. Plant Syst Evol 277(1/2):13–20

    Article  Google Scholar 

  • Hedrick PW, Garcia-Dorado A (2016) Understanding inbreeding depression, purging, and genetic rescue. Trends Ecol Evol 31(12):520–940

    Article  Google Scholar 

  • Islam MS, Lian C, Kameyama N, Hogetsu T (2015) Analysis of the mating system, reproductive characteristics, and spatial genetic structure in a natural mangrove tree (Bruguiera gymnorrhiza) population at its northern biogeographic limit in the southern Japanese archipelago. J For Res 20(2):293–300

    Article  CAS  Google Scholar 

  • Jia BG, Lin Q, Feng YZ, Hu XY, Tan XF, Shao FG, Zhang L (2015) Development and cross-species transferability of unigene-derived microsatellite markers in an edible oil woody plant, Camellia oleifera (theaceae). Genet Mol Res 14(2):6906–6916

    Article  CAS  PubMed  Google Scholar 

  • Kang M, Huang HW (2005) Genetic Diversity in Fragmented Populations of Berchemiella wilsonii var. pubipetiolata (Rhamnaceae). Ann Bot 95(7):1145–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luijten SH, Dierick A, Gerard J, Oostermeijer B (2000) Population size, genetic variation, and reproductive success in a rapidly declining, self-incompatible perennial (Arnica montana) in the netherlands. Conserv Biol 14(6):1776–1787

    Google Scholar 

  • Mandal AK, Ennos RA (1995) Mating system analysis in a natural population of Acacia nilotica, subspecies kraussiana. For Ecol Manag 79(79):235–240

    Article  Google Scholar 

  • Moriguchi Y, Tani N, Itoo S, Kanehira F, Tanaka K, Yomogida H, Taira H, Tsumura Y (2005) Gene flow and mating system in five Cryptomeria japonica D. don seed orchards as revealed by analysis of microsatellite markers. Tree Genet Genomes 1(4):174–183

    Article  Google Scholar 

  • Muluvi GM, Sprent JI, Odee D, Powell W (2004) Estimates of outcrossing rates in Moringa oleifera using amplified fragment length polymorphism (AFLP). Afr J Biotech 3(2):146–151

    Article  Google Scholar 

  • Muoki RC, Wachira FN, Pathak RS, Kamunya SM (2007) Assessment of the mating system of Camellia sinensis in biclonal seed orchards based on PCR markers. J Pomol Hortic Sci 82(5):733–738

    CAS  Google Scholar 

  • Rasmussen KK, Kollmann J (2008) Low genetic diversity in small peripheral populations of a rare european tree (Sorbus torminalis) dominated by clonal reproduction. Conserv Genet 9(6):1533–1539

    Article  Google Scholar 

  • Ritland K (1989) Correlated matings in the partial selfer mimulus guttatus. Evolution 43(4):848–859

    Article  PubMed  Google Scholar 

  • Ritland K (2002) Extensions of models for the estimation of mating systems using n independent loci. Heredity 88(4):221–228

    Article  Google Scholar 

  • Sheridan PM, Karowe DN (2000) Inbreeding, outbreeding, and heterosis in the yellow pitcher plant, Sarracenia flava (sarraceniaceae), Virginia. Am J Bot 87(11):1628–1633

    Article  CAS  PubMed  Google Scholar 

  • Stoeckel S, Grange J, Fernándezmanjarres JF, Bilger I, Frascarialacoste N, Mariette S (2006) Heterozygote excess in a self-incompatible and partially clonal forest tree species—Prunus avium L. Mol Ecol 15(8):2109–2118

    Article  CAS  Google Scholar 

  • Valdez-Ojeda R, Quiros CF, Aguilar-Espinosa MDL, Rivera-Madrid R (2010) Outcrossing rates in annatto determined by sequence-related amplified polymorphism. Agron J 102(5):1340

    Article  CAS  Google Scholar 

  • Wang C (1999) Plant mating system and its evolutionary mechanism in relation to population adaptation. J Wuhan Bot Res 11(9):e0162401

    Google Scholar 

  • Wang HX, Hu ZA (1996) Plant breeding system, genetic structure and conservation of genetic diversity. Chin Biodivers 2:92–96

    Google Scholar 

  • Wang WJ, Chen CG, Cheng J (2007) The medicine’s active role of Tea oil in health care. Food Nutr China 9:48–51

    Google Scholar 

  • Wang DX, Zeng WJ, Jiang ZP, Wu YM, Zhang NY (2014) Genetic variation and correlation of soft-branch Camellia oleifera fruit’s characters in Cenxi. J Northwest For Univ 29(06):85–89

    CAS  Google Scholar 

  • Yang CF, Chen BL, Huang CM, Lü WL (2011) Isolation of genomic DNA and establishment of ISSR reaction system for Camellia crepnelliana tutch. J South Agric 42(3):233–235

    CAS  Google Scholar 

  • Yeh FC, Yang RC, Boyle TBJ, Ye ZH, Mao JX (1997) POPGENE, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Edmonton

    Google Scholar 

  • Zhang EH, Wang XY, Qin ZH, Zhao WD, Wei CJ, Wang PL (2016a) Genetic diversity analysis of Camellia oleifera in Guangxi using SSR markers. Guihaia 36(07):806–811

    CAS  Google Scholar 

  • Zhang ZJ, Yang SX, Zeng YJ, Wang RG, Wang LM, Pang XM, Li Y (2016b) Variation within clones and families and superior individual selection in different cultivars of Camellia oleifera ‘ruanzhi’. J Beijing For Univ 38(10):59–68

    CAS  Google Scholar 

  • Zhao HH, Wang DX, Li N, Chen GC, Li KX (2012) Correlation analysis of major economic characters in superior clones of Camellia Oleifera ‘Cenxi-Ruanzhi’. Agric Res Appl 01:1–3

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to Rong-gang Wang, Shan-xun Yang and Chong-xin Xie for their assistance in field work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Li.

Additional information

Project funding: The work was supported by the applied technology research and development program of Liuzhou (No. 2010020401).

The online version is available at http://www.springerlink.com

Corresponding editor: Tao Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Meng, J., Pan, D. et al. Mating system and progeny genetic diversity of Camellia oleifera ‘Ruan Zhi’. J. For. Res. 30, 1805–1810 (2019). https://doi.org/10.1007/s11676-018-0732-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-018-0732-4

Keywords

Navigation