Skip to main content
Log in

Selective logging alters allometric relationships of five tropical tree species in seasonal semi-deciduous forests

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

In selectively logged forests, trees are more likely to expand their diameters (D) at the expense of height (H) growth, resulting in variations in H:D relationships. This study examines how selective logging affects the H:D allometric relationships of five common tree species and whether the effects vary with functional groups (shade-intolerant or shade tolerant) in seasonal semi-deciduous forests. Individuals of five species in a 3000 m2 (0.3 ha) plot were marked and heights and diameters recorded. Most of the species, with one exception, showed greater investment in diameter per increment of height compared to an unlogged forest, possibly because of the greater light available. This study shows the effects of selective logging on species populations as evidenced by increases in H:D ratios. Comparison of forest fragments with different degrees of human impact is important because it allows us to understand the differences in architectural characteristics caused by selective logging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aiba SI, Kohyama T (1996) Tree species stratification in relation to allometry and demography in a warm-temperate rain forest. J Ecol 84:207–218

    Article  Google Scholar 

  • Aiba M, Nakashizuka T (2009) Architectural differences associated with adult stature and wood density in 30 temperate tree species. Funct Ecol 23:265–273

    Article  Google Scholar 

  • Alvares CA, Stape JL, Sentelhas PC, Moraes G, Gonçalves JLM, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728

    Article  Google Scholar 

  • Alves LF, Metzger JP (2006) A regeneração florestal em áreas de floresta secundária na Reserva Florestal do Morro Grande, Cotia, SP. Biota Neotrop 6:1–26

    Article  Google Scholar 

  • Alves LF, Santos FAM (2002) Tree allometry and crown shape of four tree species in Atlantic rain forest, south-east Brazil. J Trop Ecol 18:245–260

    Article  Google Scholar 

  • Barton AM, Fetcher N, Redhead S (1989) The relationship between treefall gap size and light flux in a neotropical rain forest in Costa Rica. J Trop Ecol 5:437–439

    Article  Google Scholar 

  • Batista NA, Bianchini E, Carvalho ES, Pimenta JA (2014) Architecture of tree species of different strata developing in environments with the same light intensity in a semideciduous forest in southern Brazil. Acta Bot Bras 28:34–45

    Article  Google Scholar 

  • Bohlman S, O’Brien S (2006) Allometry, adult stature and regeneration requirement of 65 tree species on Barro Colorado Island, Panama. J Trop Ecol 22:123–136

    Article  Google Scholar 

  • Brower JE, Zar JH (1984) Field and laboratory methods for general ecology. Brown Publishers, Dubuque, p 226

    Google Scholar 

  • Burton JI, Zenner EK, Frelich LE, Cornett MW (2009) Patterns of plant community structure within and among primary and second-growth northern hardwood forest stands. For Ecol Manag 258:2556–2568

    Article  Google Scholar 

  • Caviglione JH, Kiihl LRB, Caramori PH, Oliveira D (2000) Cartas climáticas do Estado do Paraná. IAPAR, Londrina

    Google Scholar 

  • Chazdon RL, Fetcher N (1984) Photosynthetic light environments in a lowland tropical rain forest in Costa Rica. J Ecol 72:553–564

    Article  Google Scholar 

  • Dean TJ, Long JN (1986) Validity of constant-stress and elastic-instability principles of stem formation in Pinus contorta and Trifolium pratense. Ann Bot 58:833–840

    Article  Google Scholar 

  • Dent DH, Wright SJ (2009) The future of tropical species in secondary forests: a quantitative review. Biol Conserv 142:2833–2843

    Article  Google Scholar 

  • Dias MC, Vieira AOS, Paiva MRC (2002) Florística e fitossociologia das espécies arbóreas das florestas da bacia do rio Tibagi. In: Medri ME, Bianchini E, Shibata O, Pimenta JA (eds) A bacia do rio Tibagi. Universidade Estadual de Londrina, Londrina, pp 109–124

    Google Scholar 

  • Furtado AG, Sims LP, de Campos Franci L, Pereira L, Haddad CRB, Martins FR (2016) How a non-pioneer tree attains the canopy of a tropical semideciduous forest. Trees 31:93–103

    Article  Google Scholar 

  • Guariguata MR, Ostertag R (2001) Neotropical secondary forest succession: changes in structural and functional characteristics. For Ecol Manag 148:185–206

    Article  Google Scholar 

  • Haddad TM, Hertel MF, Bianchini E, Pimenta JA (2016) Architecture of four tree species from different strata of a semideciduous forest in southern Brazil. Aust J Bot 64:89–99

    Article  Google Scholar 

  • Harja D, Vincent G, Mulia R, van Noordwijk M (2012) Tree shape plasticity in relation to crown exposure. Trees 26:1275–1285

    Article  Google Scholar 

  • Heineman KD, Jensen E, Shapland A, Bogenrief B, Tan S, Rebarber R, Russo SE (2011) The effects of belowground resources on aboveground allometric growth in Bornean tree species. For Ecol Manag 261:1820–1832

    Article  Google Scholar 

  • Holbrook NM, Putz FE (1989) Influence of neighbors on tree form: effects of lateral shade and prevention of sway on the allometry of Liquidambar styraciflua (sweet gum). Am J Bot 76:1740–1749

    Article  Google Scholar 

  • IBGE (2012) Manual Técnico da Vegetação Brasileira: Manuais Técnicos em Geociências. Fundação Instituto Brasileiro de Geografia e Estatística (IBGE), Rio de Janeiro, p 272

    Google Scholar 

  • King DA (1986) Tree form, height growth, and susceptibility to wind damage in Acer saccharum. Ecology 67:980–990

    Article  Google Scholar 

  • King DA (1990a) Allometry of saplings and understorey trees of a Panamanian forest. Funct Ecol 4:27–32

    Article  Google Scholar 

  • King DA (1990b) The adaptive significance of tree height. Am Nat 135:809–828

    Article  Google Scholar 

  • King DA (1996) Allometry and life history of tropical trees. J Trop Ecol 12:25–44

    Article  Google Scholar 

  • King DA, Clark DA (2011) Allometry of emergent tree species from saplings to above-canopy adults in a Costa Rican rain forest. J Trop Ecol 27:573–579

    Article  Google Scholar 

  • Kohyama T (1987) Significance of architecture and allometry in saplings. Funct Ecol 1:399–404

    Article  Google Scholar 

  • Kohyama T, Hotta M (1990) Significance of allometry in tropical saplings. Funct Ecol 4:515–521

    Article  Google Scholar 

  • Lemmon PE (1956) A spherical densiometer for estimating forest overstory density. For Sci 2:314–320

    Google Scholar 

  • Liboni AP, Rodrigues DR, Perina BB, Rosa VPP, Bovolenta YR, Bianchini E, Pimenta JA (2010) Relações alométricas da comunidade arbórea de diferentes áreas de uma floresta ombrófila mista do sul do Brasil. Semin Ciênc Biol Saúde 31:125–136

    Article  Google Scholar 

  • Liebsch D, Marques MCM, Goldenberg R (2008) How long does the Atlantic Rain Forest take to recover after a disturbance? Changes in species composition and ecological features during secondary succession. Biol Conserv 141:1717–1725

    Article  Google Scholar 

  • Lorenzi H (2002) Árvores Brasileiras: manual de identificação e cultivo de plantas arbóreas do Brasil. Nova Odessa, Instituto Plantarum, p 384

    Google Scholar 

  • Martínez-Sánchez JL (2008) Allometric variation of shade-tolerant tree species in a Mexican tropical rain forest. Rev Biol Neotrop 5:41–51

    Google Scholar 

  • McMahon T (1973) Size and shape in biology. Science 80(179):1201–1204

    Article  Google Scholar 

  • Niklas KJ (1995) Size-dependent allometry of tree height, diameter and trunk-taper. Ann Bot 75:217–227

    Article  Google Scholar 

  • O’Brien ST, Hubbell SP, Spiro P, Condit R, Foster RB (1995) Diameter, height, crown, and age relationship in eight neotropical tree species. Ecology 76:1926–1939

    Article  Google Scholar 

  • Oliveira MA, Santos AMM, Tabarelli M (2008) Profound impoverishment of the large-tree stand in a hyper-fragmented landscape of the Atlantic forest. For Ecol Manag 256:1910–1917

    Article  Google Scholar 

  • Osunkoya OO, Omar-Ali K, Amit N, Dayan J, Daud DS, Sheng TK (2007) Comparative height–crown allometry and mechanical design in 22 tree species of Kuala Belalong rainforest, Brunei, Borneo. Am J Bot 94:1951–1962

    Article  PubMed  Google Scholar 

  • Osuri AM, Kumar VS, Sankaran M (2014) Altered stand structure and tree allometry reduce carbon storage in evergreen forest fragments in India’s Western Ghats. For Ecol Manag 329:375–383

    Article  Google Scholar 

  • Poorter L, Bongers F, Sterck FJ, Wöll H (2003) Architecture of 53 rain forest tree species differing in adult stature and shade tolerance. Ecology 84:602–608

    Article  Google Scholar 

  • Poorter L, Bongers F, Sterck FJ, Wöll H (2005) Beyond the regeneration phase: differentiation of height–light trajectories among tropical tree species. J Ecol 93:256–267

    Article  Google Scholar 

  • Poorter L, Bongers L, Bongers F (2006) Architecture of 54 moist-forest tree species: traits, trade-offs, and functional groups. Ecology 87:1289–1301

    Article  PubMed  Google Scholar 

  • Raich JW, Khoon GW (1990) Effects of canopy openings on tree seed germination in a Malaysian dipterocarp forest. J Trop Ecol 6:203–217

    Article  Google Scholar 

  • Rich PM, Helenurm K, Kearns D, Morse SR, Palmer MW, Short L (1986) Height and stem diameter relationships for dicotyledonous trees and arborescent palms of Costa Rican tropical wet forest. Bull Torrey Bot Club 1:241–246

    Article  Google Scholar 

  • Rodrigues DR, Bovolenta YR, Bianchini E, Pimenta JA (2016) Height structure and spatial pattern of five tropical tree species in two seasonal semideciduous forest fragments with different conservation histories. Rev Árvore 40:395–405

    Article  Google Scholar 

  • RStudio Team (2016) RStudio: integrated development for R, Version 0.98.981. Rstudio, Boston

  • Rutishauser E, Hérault B, Petronelli P, Sist P (2016) Tree height reduction after selective logging in a Tropical Forest. Biotropica 48:285–289

    Article  Google Scholar 

  • Santos HG, Jacomine PKT, Anjos LHC et al (2006) Sistema brasileiro de classificação de solos, 3rd edn. Rio de Janeiro, Embrapa Solos, p 304

  • Silva FC, Soares-Silva LH (2000) Arboreal flora of the Godoy Forest State Park, Londrina. PR. Brazil. Edinburgh J Bot 57:107–120

    Article  Google Scholar 

  • Silveira M (2006) A vegetação do Parque Estadual Mata dos Godoy. Ecologia do Parque Estadual Mata dos Godoy. Londrina, ITEDES, pp 19–27

    Google Scholar 

  • Soares-Silva LH, Barroso GM (1992) Fitossociologia do estrato arbóreo da floresta na porção norte do Parque Estadual Mata dos Godoy, Londrina-PR, Brasil. In: In “Anais do VIII Congresso da Sociedade Botânica de São Paulo.”Sociedade Botânica de São Paulo, São Paulo, pp 101–112

  • Sposito TC, Santos FAM (2001) Scaling of stem and crown in eight Cecropia (Cecropiaceae) species of Brazil. Am J Bot 88:939–949

    Article  CAS  PubMed  Google Scholar 

  • Sterck FJ (1999) Crown development in tropical rain forest trees in gaps and understorey. Plant Ecol 143:89–98

    Article  Google Scholar 

  • Sterck F, Bongers F (1998) Ontogenetic changes in size, allometry, and mechanical design of tropical rain forest trees. Am J Bot 85:266

    Article  CAS  PubMed  Google Scholar 

  • Sterck FJ, Bongers F (2001) Crown development in tropical rain forest trees: patterns with tree height and light availability. J Ecol 89:1–13

    Article  Google Scholar 

  • Swaine MD, Whitmore TC (1988) On the definition of ecological species groups in tropical rain forests. Vegetation 75:81–86

    Article  Google Scholar 

  • Tomé M, Miglioranza E, Vilhena AHT, Fonseca EP (1999) Composição florística e fitossociológica do Parque Estadual Mata São Francisco. Rev do Inst Florest 11:13–23

    Google Scholar 

  • Vieilledent G, Courbaud B, Kunstler G, Dhôte J-F, Clark JS (2010) Individual variability in tree allometry determines light resource allocation in forest ecosystems: a hierarchical Bayesian approach. Oecologia 163:759–773

    Article  PubMed  Google Scholar 

  • Warton DI, Weber NC (2002) Common slope tests for bivariate errors-in-variables models. Biom J 44:161

    Article  Google Scholar 

  • Warton DI, Wright IJ, Falster DS, Westoby M (2006) Bivariate line-fitting methods for allometry. Biol Rev Camb Philos Soc 81:259–291

    Article  PubMed  Google Scholar 

  • Warton DI, Duursma RA, Falster DS, Taskinen S (2012) SMATR 3—an R package for estimation and inference about allometric lines. Methods Ecol Evol 3:257–259

    Article  Google Scholar 

  • Weiner J, Thomas SC (1992) Competition and allometry in three species of annual plants. Ecology 73:648–656

    Article  Google Scholar 

  • Yamada T, Ngakan OP, Suzuki E (2005) Differences in growth trajectory and strategy of two sympatric congeneric species in an Indonesian floodplain forest. Am J Bot 92:45–52

    Article  PubMed  Google Scholar 

  • Zama MY, Bovolenta YR, Carvalho ES, Rodrigues DR, Araujo CG, Sorace MAF, Luz DG (2012) Florística e síndromes de dispersão de espécies arbustivo-arbóreas no Parque Estadual Mata São Francisco, PR, Brasil. Hoehnea 39:369–378

    Article  Google Scholar 

Download references

Acknowledgements

We extend our appreciation to Maristela Y. Zama, Eloísa S. Carvalho, Ana P. Liboni and Gabriel A. de Oliveira for their assistance and very useful suggestions. Our profound thanks to the Postgraduate Program in Biological Sciences of the State University of Londrina for its support, the Brazilian Education Council (CAPES) and the Environmental Institute of Paraná (IAP) for authorizing the work in protected areas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Resende Rodrigues.

Additional information

The online version is available at http://www.springerlink.com

Corresponding editor: Tao Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, D.R., Bovolenta, Y.R., Pimenta, J.A. et al. Selective logging alters allometric relationships of five tropical tree species in seasonal semi-deciduous forests. J. For. Res. 30, 1633–1639 (2019). https://doi.org/10.1007/s11676-018-0705-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-018-0705-7

Keywords

Navigation