Skip to main content
Log in

Comparison of temporal and spatial changes in three major tropical forests based on MODIS data

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Numerous studies have shown that intact tropical forests account for half of the total terrestrial sink for anthropogenic carbon dioxide. Here, we analyzed and compared changes in three main tropical forest regions from 2000 to 2014, based on time-series analysis and landscape metrics derived from moderate-resolution imaging spectroradiometer data. We examined spatial-pattern changes in percentage of tree cover and net primary production (NPP) for three tropical forest regions—Amazon basin, Congo basin, and Southeast Asia. The results show that: the Amazon basin region had the largest tropical forest area and total NPP and a better continuity of TC distribution; the Southeast Asia region exhibited a sharp decrease in NPP and had comparatively separate spatial patterns of both TC and NPP; and the Congo basin region exhibited a dramatic increase in NPP and had better aggregation of forest NPP distribution. Results also show that aggregative patterns likely correlate with high NPP values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anamariag T, Britaldos SF, Simoner F, Jeanpaul M (2009) Modeling landscape dynamics in an Atlantic Rainforest region: implications for conservation. For Ecol Manag 257(4):1219–1230

    Article  Google Scholar 

  • Anaya JA, Chuvieco E, Palacios-Orueta A (2009) Aboveground biomass assessment in Colombia: a remote sensing approach. For Ecol Manag 257(4):1237–1246

    Article  Google Scholar 

  • Aragao L, Poulter B, Barlow JB, Anderson LO, Malhi Y, Saatchi S, Phillips OL, Gloor E (2014) Environmental change and the carbon balance of Amazonian forests. Biol Rev 89(4):913–931

    Article  PubMed  Google Scholar 

  • Asner GP, Rudel TK, Aide TM, Defries R, Emerson R (2009) A contemporary assessment of change in humid tropical forests. Conserv Biol 23(6):1386–1395

    Article  PubMed  Google Scholar 

  • Balmford A, Green RE, Jenkins M (2003) Measuring the changing state of nature. Trends Ecol Evol 18(7):326–330

    Article  Google Scholar 

  • Başkent EZ, Kadioğullari AI (2007) Spatial and temporal dynamics of land use pattern in Turkey: a case study in İnegöl. Landsc Urban Plan 81(4):316–327

    Article  Google Scholar 

  • Benchimol M, Peres CA (2014) Predicting primate local extinctions within “real-world” forest fragments: a pan-neotropical analysis. Am J Primatol 76(3):289–302

    Article  PubMed  Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320(5882):1444–1449

    Article  CAS  PubMed  Google Scholar 

  • Booth BB, Jones CD, Collins M, Totterdell IJ, Cox PM, Sitch S, Huntingford C, Betts RA, Harris GR, Lloyd J (2012) High sensitivity of future global warming to land carbon cycle processes. Environ Res Lett 7(2):024002

    Article  CAS  Google Scholar 

  • Broadbent EN, Asner GP, Keller M, Knapp DE, Oliveira PJ, Silva JN (2008) Forest fragmentation and edge effects from deforestation and selective logging in the Brazilian Amazon. Biol Conserv 141(7):1745–1757

    Article  Google Scholar 

  • Brovkin V, Boysen L, Raddatz T, Gayler V, Loew A, Claussen M (2013) Evaluation of vegetation cover and land-surface albedo in MPI-ESM CMIP5 simulations. J Adv Model Earth Syst 5(1):48–57

    Article  Google Scholar 

  • Bustamante MMC, Roitman I, Aide TM, Alencar A, Anderson LO, Aragao L, Asner GP, Barlow J, Berenguer E, Chambers J, Costa MH, Fanin T, Ferreira LG, Ferreira J, Keller M, Magnusson WE, Morales-Barquero L, Morton D, Ometto J, Palace M, Peres CA, Silverio D, Trumbore S, Vieira ICG (2016) Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity. Glob Change Biol 22(1):92–109

    Article  Google Scholar 

  • Carroll M, Townshend J, Hansen M, DiMiceli C, Sohlberg R, Wurster K (2010) MODIS vegetative cover conversion and vegetation continuous fields. In: Ramachandran B, Justice CO, Abrams MJ (eds) Land remote sensing and global environmental change. Springer, New York, pp 725–745

    Chapter  Google Scholar 

  • Cavanaugh KC, Gosnell JS, Davis SL, Ahumada J, Boundja P, Clark DB, Mugerwa B, Jansen PA, O’Brien TG, Rovero F, Sheil D, Vasquez R, Andelman S (2014) Carbon storage in tropical forests correlates with taxonomic diversity and functional dominance on a global scale. Glob Ecol Biogeogr 23(5):563–573

    Article  Google Scholar 

  • Chen LF, Gao YH, Liu QH, Yu T, Gu XF, Yang L, Tang Y, Zhang Y (2005) The MODIS-based NPP model and its validation. In: 2005 IEEE international geoscience and remote sensing symposium, South Korea. IEEE, pp 3028–3031

  • Chow J, Doria G, Kramer R, Schneider T, Stoike J (2013) Tropical forests under a changing climate and innovations in tropical forest management. Trop Conserv Sci 6(3):315–324

    Article  Google Scholar 

  • Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR, Ni J, Holland EA (2001) Net primary production in tropical forests: an evaluation and synthesis of existing field data. Ecol Appl 11(2):371–384

    Article  Google Scholar 

  • Clark DB, Clark DA, Oberbauer SF (2010) Annual wood production in a tropical rain forest in NE Costa Rica linked to climatic variation but not to increasing CO2. Glob Change Biol 16(2):747–759

    Article  Google Scholar 

  • Clay E, Moreno-Sanchez R, Torres-Rojo J, Moreno-Sanchez F (2016) National assessment of the fragmentation levels and fragmentation-class transitions of the forests in Mexico for 2002, 2008 and 2013. Forests 7(3):48

    Article  Google Scholar 

  • Cleveland CC, Taylor P, Chadwick KD, Dahlin K, Doughty CE, Malhi Y, Smith WK, Sullivan BW, Wieder WR, Townsend AR (2015) A comparison of plot-based satellite and Earth system model estimates of tropical forest net primary production. Glob Biogeochem Cycles 29(5):626–644

    Article  CAS  Google Scholar 

  • Corlett RT (2011) Impacts of warming on tropical lowland rainforests. Trends Ecol Evol 26(11):606–613

    Article  PubMed  Google Scholar 

  • Corlett RT (2016) The impacts of droughts in tropical forests. Trends Plant Sci 21(7):584–593

    Article  CAS  PubMed  Google Scholar 

  • Cox PM, Pearson D, Booth BB, Friedlingstein P, Huntingford C, Jones CD, Luke CM (2013) Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494(7437):341–344

    Article  CAS  PubMed  Google Scholar 

  • Crouzeilles R, Curran M (2016) Which landscape size best predicts the influence of forest cover on restoration success? A global meta-analysis on the scale of effect. J Appl Ecol 53(2):440–448

    Article  Google Scholar 

  • DiMiceli C, Carroll M, Sohlberg R, Huang C, Hansen M, Townshend J (2011) Annual global automated MODIS vegetation continuous fields (MOD44B) at 250 m spatial resolution for data years beginning day 65, 2000–2010, collection 5 percent tree cover. University of Maryland, College Park, MD, USA. http://www.landcover.org/data/vcf. Accessed 20 Sept 2016

  • Ersahin S, Bilgili BC, Dikmen U, Ercanli I (2016) Net primary productivity of anatolian forests in relation to climate, 2000–2010. For Sci 62(6):698–709

    Google Scholar 

  • Feeley KJ, Wright SJ, Supardi MNN, Kassim AR, Davies SJ (2007) Decelerating growth in tropical forest trees. Ecol Lett 10(6):461–469

    Article  PubMed  Google Scholar 

  • Forman RT, Godron M (1986) Landscape ecology. Wiley, New York

    Google Scholar 

  • Franklin JF, Forman RTT (1987) Creating landscape patterns by forest cutting: ecological consequences and principles. Landsc Ecol 1(1):5–18

    Article  Google Scholar 

  • Freitas SR, Lignani LB, Cabral DC (2011) Influence of landscape features on forest maturity: the case of a fragmented landscape in the Serra Do Mar coastal forest in Brazil. Braz J Nat Conserv 9(9):194–199

    Article  Google Scholar 

  • Gergel SE (2007) New directions in landscape pattern analysis and linkages with remote sensing. In: Wulder MA, Franklin SE (eds) Understanding forest disturbance and spatial pattern: remote sensing and GIS approaches. Taylor and Francis, Boca Raton

    Google Scholar 

  • Grace J, Malhi Y, Higuchi N, Meir P (2001) Productivity of tropical rain forests. In: Roy J, Mooney HA, Saugier B (eds) Terrestrial global productivity. Elsevier, London

    Google Scholar 

  • Grainger A (2010) Uncertainty in the construction of global knowledge of tropical forests. Prog Phys Geogr 34(6):811–844

    Article  Google Scholar 

  • Hansen MC, Defries RS (2004) Detecting long-term global forest change using continuous fields of tree-cover maps from 8-km advanced very high resolution radiometer (AVHRR) data for the years 1982–99. Ecosystems 7(7):695–716

    Article  Google Scholar 

  • He LM, Chen JM, Pan YD, Birdsey R, Kattge J (2012) Relationships between net primary productivity and U.S. forest stand age in forests. Glob Biogeochem Cycles 26(3):GB3009

    Article  CAS  Google Scholar 

  • Hernández-Stefanoni JL, Dupuy JM, Tun-Dzul F (2011) Influence of landscape structure and stand age on species density and biomass of a tropical dry forest across spatial scales. Landsc Ecol 26(3):355–370

    Article  Google Scholar 

  • Hessburg PF, Smith BG, Salter RB (1999) Detecting change in forest spatial patterns from reference conditions. Ecol Appl 9(4):1232–1252

    Article  Google Scholar 

  • Hill JL, Curran PJ (2003) Area, shape and isolation of tropical forest fragments: effects on tree species diversity and implications for conservation. J Biogeogr 30(9):1391–1403

    Article  Google Scholar 

  • Huntingford C, Zelazowski P, Galbraith D, Mercado LM, Sitch S, Fisher R, Lomas M, Walker AP, Jones CD, Booth BBB, Malhi Y, Hemming D, Kay G, Good P, Lewis SL, Phillips OL, Atkin OK, Lloyd J, Gloor E, Zaragoza-Castells J, Meir P, Betts R, Harris PP, Nobre C, Marengo J, Cox PM (2013) Simulated resilience of tropical rainforests to CO2-induced climate change. Nat Geosci 6(4):268–273

    Article  CAS  Google Scholar 

  • Keenan RJ, Reams GA, Achard F, de Freitas JV, Grainger A, Lindquist E (2015) Dynamics of global forest area: results from the FAO Global Forest Resources Assessment 2015. For Ecol Manag 352:9–20

    Article  Google Scholar 

  • Kim DH, Sexton JO, Townshend JR (2015) Accelerated deforestation in the humid tropics from the 1990s to the 2000s. Geophys Res Lett 42(9):3495–3501

    Article  PubMed  PubMed Central  Google Scholar 

  • Kou W, Liang CX, Wei LL, Hernandez AJ, Yang XJ (2017) Phenology-based method for mapping tropical evergreen forests by integrating of MODIS and landsat imagery. Forests 8(2):34

    Article  Google Scholar 

  • Kupfer JA (2006) National assessments of forest fragmentation in the US. Glob Environ Change 16(1):73–82

    Article  Google Scholar 

  • Kupfer JA, Runkle JR (2003) Edge-mediated effects on stand dynamic processes in forest interiors: a coupled field and simulation approach. Oikos 101(1):135–146

    Article  Google Scholar 

  • Kwon Y, Larsen CPS (2013) An assessment of the optimal scale for monitoring of MODIS and FIA NPP across the eastern USA. Environ Monit Assess 185(9):7263–7277

    Article  CAS  PubMed  Google Scholar 

  • Laurance WF, Laurance SG, Delamonica P (1998) Tropical forest fragmentation and greenhouse gas emissions. For Ecol Manag 110(1–3):173–180

    Article  Google Scholar 

  • Li HB, Wu JG (2004) Use and misuse of landscape indices. Landsc Ecol 19(4):389–399

    Article  Google Scholar 

  • Lloret F, Calvo E, Pons X, Díaz-Delgado R (2002) Wildfires and landscape patterns in the Eastern Iberian Peninsula. Landsc Ecol 17(8):745–759

    Article  Google Scholar 

  • Loveland TR, Belward AS (1997) The IGBP-DIS global 1 km land cover data set, DISCover: first results. Int J Remote Sens 18(15):3289–3295

    Article  Google Scholar 

  • MacDicken K, Jonsson Ő, Piňa L, Maulo S, Adikari Y, Garzuglia M, Lindquist E, Reams G, D’Annunzio R (2015) The global forest resources assessment 2015: how are the world’s forests changing. Food and Agriculture Organization of the United Nations, Rome

    Book  Google Scholar 

  • Malhi Y, Grace J (2000) Tropical forests and atmospheric carbon dioxide. Trends Ecol Evol 15(8):332–337

    Article  CAS  PubMed  Google Scholar 

  • Mayaux P, Achard F, Malingreau JP (1998) Global tropical forest area measurements derived from coarse resolution satellite imagery: a comparison with other approaches. Environ Conserv 25(1):37–52

    Article  Google Scholar 

  • Mayaux P, Holmgren P, Achard F, Eva H, Stibig H, Branthomme A (2005) Tropical forest cover change in the 1990s and options for future monitoring. Philos Trans R Soc B Biol Sci 360(1454):373–384

    Article  Google Scholar 

  • McGarigal K (2014) FRAGSTATS help. Retrieved from https://www.umass.edu/landeco/research/fragstats/documents/fragstats.help.4.2.pdf. Accessed 15 Nov 2016

  • McGarigal K, Cushman SA, Neel MC, Ene E (2002) FRAGSTATS: spatial pattern analysis program for categorical maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. http://www.umass.edu/landeco/research/fragstats/fragstats.html. Accessed 14 Nov 2016

  • Meyfroidt P, Lambin EF (2011) Global forest transition: prospects for an end to deforestation. Ann Rev Environ Resour Soc Sci Electron Publ 36:343–371

    Article  Google Scholar 

  • Michaela W, Joannec W, Margarete A, Nicolee S, Nicholasc C (2009) Forest fragmentation, structure, and age characteristics as a legacy of forest management. For Ecol Manag 258(9):1938–1949

    Article  Google Scholar 

  • Millington AC, Velez-Liendo XM, Bradley AV (2003) Scale dependence in multitemporal mapping of forest fragmentation in Bolivia: implications for explaining temporal trends in landscape ecology and applications to biodiversity conservation. ISPRS J Photogramm Remote Sens 57(4):289–299

    Article  Google Scholar 

  • Morton DC, DeFries RS, Shimabukuro YE, Anderson LO, Del Bon Espírito-Santo F, Hansen M, Carroll M (2005) Rapid assessment of annual deforestation in the Brazilian Amazon using MODIS data. Earth Interact 9(8):1–22

    Article  Google Scholar 

  • Nagendra H (2002) Opposite trends in response for the Shannon and Simpson indices of landscape diversity. Appl Geogr 22(2):175–186

    Article  Google Scholar 

  • Newbold T, Hudson LN, Phillips HRP, Hill SLL, Contu S, Lysenko I, Blandon A, Butchart SHM, Booth HL, Day J, De Palma A, Harrison MLK, Kirkpatrick L, Pynegar E, Robinson A, Simpson J, Mace GM, Scharlemann JPW, Purvis A (2014) A global model of the response of tropical and sub-tropical forest biodiversity to anthropogenic pressures. Proc R Soc B Biol Sci 281(1792):20141371

    Article  Google Scholar 

  • Oliveras I, Malhi Y (2016) Many shades of green: the dynamic tropical forest–savannah transition zones. Philos Trans R Soc B Biol Sci 371(1703):15

    Article  CAS  Google Scholar 

  • Pan YD, Birdsey R, Hom J, McCullough K, Clark K (2006) Improved estimates of net primary productivity from MODIS satellite data at regional and local scales. Ecol Appl 16(1):125–132

    Article  PubMed  Google Scholar 

  • Parresol BR (2011) Derivation of two well-behaved theoretical contagion indices and their sampling properties and application for assessing forest landscape diversity. Nat Resour Model 24(1):61–101

    Article  Google Scholar 

  • Peng DL, Zhang B, Wu CY, Huete AR, Gonsamo A, Lei LP, Ponce-Campos GE, Liu XJ, Wu YH (2017) Country-level net primary production distribution and response to drought and land cover change. Sci Total Environ 574:65–77

    Article  CAS  PubMed  Google Scholar 

  • Petrosyan A, Karathanassi V (2011) Review article of landscape metrics based on remote sensing data. J Environ Sci Eng 5(11):1542–1560

    Google Scholar 

  • Phillips OL, Malhi Y, Higuchi N, Laurance WF, Núnez PV, Vásquez RM, Laurance SG, Ferreira LV, Stern M, Brown S (1998) Changes in the carbon balance of tropical forests: evidence from long-term plots. Science 282(5388):439–442

    Article  CAS  PubMed  Google Scholar 

  • Potapov P, Yaroshenko A, Turubanova S, Dubinin M, Laestadius L, Thies C, Aksenov D, Egorov A, Yesipova Y, Glushkov I (2008) Mapping the world’s intact forest landscapes by remote sensing. Ecol Soc 13(2):51

    Article  Google Scholar 

  • Potter C, Klooster S, Hiatt C, Genovese V, Castilla-Rubio JC (2011) Changes in the carbon cycle of Amazon ecosystems during the 2010 drought. Environ Res Lett 6(3):034024

    Article  CAS  Google Scholar 

  • Potter C, Klooster S, Genovese V (2012) Net primary production of terrestrial ecosystems from 2000 to 2009. Clim Change 115(2):365–378

    Article  Google Scholar 

  • Pütz S, Groeneveld J, Alves LF, Metzger JP, Huth A (2011) Fragmentation drives tropical forest fragments to early successional states: a modelling study for Brazilian Atlantic forests. Ecol Model 222(12):1986–1997

    Article  CAS  Google Scholar 

  • Rafique R, Zhao F, de Jong R, Zeng N, Asrar GR (2016) Global and regional variability and change in terrestrial ecosystems net primary production and NDVI: a model-data comparison. Remote Sens 8(3):177

    Article  Google Scholar 

  • Ramachandran B, Justice CO, Abrams MJ (eds) (2010) Land remote sensing and global environmental change: NASA’s earth observing system and the science of ASTER and MODIS. Springer, New York

    Google Scholar 

  • Rammig A, Jupp T, Thonicke K, Tietjen B, Heinke J, Ostberg S, Lucht W, Cramer W, Cox P (2010) Estimating the risk of Amazonian forest dieback. New Phytol 187(3):694–706

    Article  CAS  PubMed  Google Scholar 

  • Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5(1):18–32

    Article  Google Scholar 

  • Schmidt M, Jochheim H, Kersebaum KC, Lischeid G, Nendel C (2017) Gradients of microclimate, carbon and nitrogen in transition zones of fragmented landscapes—a review. Agric For Meteorol 232:659–671

    Article  Google Scholar 

  • Schulz C, Koch R, Cierjacks A, Kleinschmit B (2017) Land change and loss of landscape diversity at the Caatinga phytogeographical domain—analysis of pattern-process relationships with MODIS land cover products (2001–2012). J Arid Environ 136:54–74

    Article  Google Scholar 

  • Sexton JO, Noojipady P, Song X, Feng M, Song DX, Kim DH, Anand A, Huang C, Channan S, Pimm SL, Townshend JR (2015) Conservation policy and the measurement of forests. Nat Clim Change 6:192–196

    Article  Google Scholar 

  • Sfair JC, Arroyo-Rodriguez V, Santos BA, Tabarelli M (2016) Taxonomic and functional divergence of tree assemblages in a fragmented tropical forest. Ecol Appl 26(6):1816–1826

    Article  PubMed  Google Scholar 

  • Shen Y, Yu SX, Lian JY, Shen H, Cao HL, Lu HP, Ye WH (2016) Tree aboveground carbon storage correlates with environmental gradients and functional diversity in a tropical forest. Sci Rep 6:25304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sloan S, Sayer JA (2015) Forest resources assessment of 2015 shows positive global trends but forest loss and degradation persist in poor tropical countries. For Ecol Manag 352:134–145

    Article  Google Scholar 

  • Spracklen BD, Kalamandeen M, Galbraith D, Gloor E, Spracklen DV (2015) A global analysis of deforestation in moist tropical forest protected areas. PLoS ONE 10(12):e0143886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sterck F, Anten NPR, Schieving F, Zuidema PA (2016) Trait acclimation mitigates mortality risks of tropical canopy trees under global warming. Front Plant Sci 7:607

    Article  PubMed  PubMed Central  Google Scholar 

  • Toivonen JM, Kessler M, Ruokolainen K (2011) Accessibility predicts structural variation of Andean Polylepis forests. Biodivers Conserv 20(8):1789–1802

    Article  Google Scholar 

  • Tum M, Zeidler JN, Gunther KP, Esch T (2016) Global NPP and straw bioenergy trends for 2000–2014. Biomass Bioenerg 90:230–236

    Article  Google Scholar 

  • Tyukavina A, Baccini A, Hansen MC, Potapov PV, Stehman SV, Houghton RA, Krylov AM, Turubanova S, Goetz SJ (2015) Aboveground carbon loss in natural and managed tropical forests from 2000 to 2012. Environ Res Lett 10(7):74002

    Article  CAS  Google Scholar 

  • van der Werf GR, Morton DC, DeFries RS, Olivier JGJ, Kasibhatla PS, Jackson RB, Collatz GJ, Randerson JT (2009) CO2 emissions from forest loss. Nat Geosci 2(11):737–738

    Article  CAS  Google Scholar 

  • Wheeler CE, Omeja PA, Chapman CA, Glipin M, Tumwesigye C, Lewis SL (2016) Carbon sequestration and biodiversity following 18 years of active tropical forest restoration. For Ecol Manag 373:44–55

    Article  Google Scholar 

  • With KA (2004) Assessing the risk of invasive spread in fragmented landscapes. Risk Anal 24(4):803–815

    Article  PubMed  Google Scholar 

  • Wolfe RE, Nishihama M, Fleig AJ, Kuyper JA, Roy DP, Storey JC, Patt FS (2002) Achieving sub-pixel geolocation accuracy in support of MODIS land science. Remote Sens Environ 83(1–2):31–49

    Article  Google Scholar 

  • Wu JG, Hobbs R (2002) Key issues and research priorities in landscape ecology: an idiosyncratic synthesis. Landsc Ecol 17:355–365

    Article  Google Scholar 

  • Wulder MA, White JC, Andrew ME, Seitz NE, Coops NC (2009) Forest fragmentation, structure, and age characteristics as a legacy of forest management. For Ecol Manag 258(9):1938–1949

    Article  Google Scholar 

  • Wulder MA, White JC, Han T, Coops NC, Cardille JA, Holland T, Grills D (2011) Monitoring Canada’s forests. Part 2: national forest fragmentation and pattern. Can J Remote Sens 34(6):563–584

    Article  Google Scholar 

  • Xiong XX, Angal A, Sun JQ, Choi TY, Johnson E (2014) On-orbit performance of MODIS solar diffuser stability monitor. J Appl Remote Sens 8(1):183514

    Google Scholar 

  • Zhao M, Running SW (2010) Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329(5994):940–943

    Article  CAS  PubMed  Google Scholar 

  • Zhao M, Running SW (2011) Response to comments on Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 333(6046):1093–1093

    Article  CAS  Google Scholar 

  • Zhao WQ, Zhao X, Tang BJ, Wu DH, Wei H (2015) Solar radiation contributed to the 2005 and 2010 Amazon droughts. In: 2015 IEEE international geoscience and remote sensing symposium (IGARSS), Italy. IEEE, pp 1964–1967

Download references

Acknowledgements

The MODIS LCT and NPP products were retrieved from the online Data Pool, courtesy of the NASA EOSDIS Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota, https://lpdaac.usgs.gov/data_access/data_pool. We would like to thank Editage [www.editage.cn] for English-language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinwu Li.

Additional information

Project funding: The work was supported by the National Key Research and Development Program of China (Grant No. 2016YFA0600304), the International Partnership Program of Chinese Academy of Sciences (Grant No. 131C11KYSB20160061), and the Hainan Provincial Department of Science and Technology (Grant No. ZDKJ2016021).

The online version is available at http://www.springerlink.com

Corresponding editor: Tao Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, S., Wu, W. & Li, X. Comparison of temporal and spatial changes in three major tropical forests based on MODIS data. J. For. Res. 30, 1603–1617 (2019). https://doi.org/10.1007/s11676-018-0695-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-018-0695-5

Keywords

Navigation