Skip to main content
Log in

Evaluation of biodiesel from Xanthoceras sorbifolia Bunge seed kernel oil from 13 areas in China

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Oil content from seed kernels of Xanthoceras sorbifolia from 13 areas in China was analyzed by gas chromatography–mass spectrometry to determine oil characteristics and biodiesel properties. The seeds had a high kernel percentage (53.67% ± 7.51), oil content (52.21% ± 4.01), and biodiesel yield (99.77% ± 0.21). Among the fatty acids in the oil were high percentages of linoleic acid (41.66 ± 2.26)% and oleic acid (28.44% ± 2.03). Most of the fuel properties complied well with the ASTM D6751-10, EN 14214-08, and GB/T 20828-2014 standards. The 13 sampling areas were grouped into four clusters based on different kernel percentage, oil content, biodiesel yield, and fatty acid composition. The results showed that the quality of kernel oils from seeds from Ar Horqin Banner was the best, although kernel oils from seeds in all 13 areas were suitable for biodiesel production. This study provides a basis for selecting optimal sites to harvest seeds from X. sorbifolia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • ASTM D 6751 2017 (2002) Standard specification for biodiesel fuel blend stock (B100) for middle distillate fuels. Am Soc Test Mater, pp 1–11

  • Azmir J, Zaidul ISM, Rahman MM, Sharif KM, Sahena F, Jahurul MHA, Mohamed A (2014) Optimization of oil yield of Phaleria macrocarpa seed using response surface methodology and its fatty acids constituents. Ind Crops Prod 52:405–412

    Article  CAS  Google Scholar 

  • Barekati-Goudarzi M, Boldor D, Nde DB (2016) In-situ transesterification of seeds of invasive Chinese tallow trees (Triadica sebifera L.) in a microwave batch system (GREEN3) using hexane as co-solvent: biodiesel production and process optimization. Bioresour Technol 201:97–104

    Article  CAS  PubMed  Google Scholar 

  • Bi QX, Guan WB (2014) Isolation and characterisation of polymorphic genomic SSRs markers for the endangered tree Xanthoceras sorbifolium Bunge. Conserv Genet Res. 6(4):895–898

    Article  Google Scholar 

  • Bournay L, Casanave D, Delfort B (2006) New heterogeneous process for biodiesel production: a way to improve the quality and the value of the crude glye-erin production by biodiesel plants. Catal Today 106:190–192

    Article  CAS  Google Scholar 

  • EN 14214 2010 (2003) Automotive fuels—Fatty acid methyl esters (FAME) for diesel engines—requirements and test methods. European Committee for Standardization. German Institute for Standardization, pp 1–19

  • GB/T 20828 2014 (2014) Biodiesel blend stock (BD 100) for diesel energy fuels. Chinese Standards, pp 1–12

  • Go AW, Sutanto S, Zullaikah S, Ismadji S, Ju YH (2016) A new approach in maximizing and direct utilization of whole Jatropha curcas L. kernels in biodiesel production—technological improvement. Renew Energy 85(1):759–765

    Article  CAS  Google Scholar 

  • Hao YN, Wang XM, Ding LJ (2011) Preparation of biodiesel from Xanthoceras sorbifolia Bunge seed oil. Adv Mater Res 183:1777–1782

    Article  CAS  Google Scholar 

  • Harrington KJ (1986) Chemical and physical properties of vegetable oil esters and their effect on diesel fuel performance. Biomass 9:1–17

    Article  CAS  Google Scholar 

  • Kalayasiri P, Jeyashoke N, Krisnangkura K (1996) Survey of seed oils for use as diesel fuels. J Am Oil Chem Soc 73(4):471–474

    Article  CAS  Google Scholar 

  • Kapilakarn K, Peugtong A (2007) A comparison of costs of biodiesel production from transesterication. Int Energy J 8:1–6

    Google Scholar 

  • Karmakar A, Karmakar S, Mukherjee S (2010) Properties of various plants and animals feed stocks for biodiesel production. Bioresour Technol 10:7201–7210

    Article  CAS  Google Scholar 

  • Knothe G (2008) “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuels 22:1358–1364

    Article  CAS  Google Scholar 

  • Krisnangkura K (1986) K. A simple method for estimation of Cetane index of vegetable oil methyl esters. J Am Oil Chem Soc 63:552–553

    Article  CAS  Google Scholar 

  • Li J, Zu YG, Fu YJ, Yang YC, Li SM, Li ZN, Wink M (2010) Optimization of microwave-assisted extraction of triterpene saponins from defatted residue of yellow horn (Xanthoceras sorbifolia Bunge.). Innov Food Sci Emerg Technol 138(4):2152–2158

    Google Scholar 

  • Li J, Fu YJ, Qu XJ, Wang W, Luo M, Zhao CJ, Zu YG (2012) Biodiesel production from yellow horn (Xanthoceras sorbifolia Bunge.) seed oil using ion exchange resin as heterogeneous catalyst. Bioresour Technol 108:112–118

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zu YG, Luo M, Gu CB, Zhao CJ, Efferth T, Fu YJ (2013) Aqueous enzymatic process assisted by microwave extraction of oil from yellow horn (Xanthoceras sorbifolia Bunge.) seed kernels and its quality evaluation. Food Chem 138(4):2152–2158

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Chen P, He J, Deng L, Wang L, Lei J, Rong L (2014a) Extraction of oil from Jatropha curcas seeds by subcritical fluid extraction. Ind Crops Prod 62:235–241

    Article  CAS  Google Scholar 

  • Liu Z, Mei L, Wang Q, Shao Y, Tao Y (2014b) Optimization of subcritical fluid extraction of seed oil from Nitraria tangutorum using response surface methodology. LWT Food Sci Technol 56(1):168–174

    Article  CAS  Google Scholar 

  • Lovato L, Pelegrini BL, Rodrigues J, Oliveira AJB, Ferreira ICP (2014) Seed oil of Sapindus saponaria L. (Sapindaceae) as potential C16 to C22 fatty acids resource. Biomass Bioenergy 60:247–251

    Article  CAS  Google Scholar 

  • Mukta N, Murthy IYLN, Sripal P (2009) Variability assessment in Pongamia pinnata (L.) Pierre germplasm for biodiesel traits. Ind Crops Prod 29(2–3):536–540

    Article  CAS  Google Scholar 

  • Qi JH, Yao ZY (2012) Review on reproductive biology, propagation and breeding of Xanthoceras sorbifolia. J Northwest For Univ 27(3):91–96

    Google Scholar 

  • Qu XJ, Fu YJ, Luo M, Zhao CJ, Zu YG, Li CY, Wang W, Li J, Wei ZF (2013) Acidic pH based microwave-assisted aqueous extraction of seed oil from yellow horn (Xanthoceras sorbifolia Bunge). Ind Crops Prod 43:420–426

    Article  CAS  Google Scholar 

  • Rashid U, Anwar F, Knothe G (2011) Biodiesel from Milo (Thespesia populnea L.) seed oil. Biomass Bioenergy 35(9):4034–4039

    Article  CAS  Google Scholar 

  • Ruangsomboon S (2015) Effects of different media and nitrogen sources and levels on growth and lipid of green microalga Botryococcus braunii KMITL and its biodiesel properties based on fatty acid composition. Bioresour Technol 191:377–384

    Article  CAS  PubMed  Google Scholar 

  • Sarin R, Sharma M, Sinharay S, Malhotra RK (2007) Jatropha-palm biodiesel blends: an optimum mix for Asia. Fuel 86(10–11):1365–1371

    Article  CAS  Google Scholar 

  • Scott PT, Preglj L, Chen N, Hadler JS, Djordjevic MA, Grasshoff PM (2008) Pongamia pinnata: an untapped resource for the biofuels industry of the future. Bioenergy Res 1(1):2–11

    Article  Google Scholar 

  • Shibasaki-Kitakawa N, Kanagawa K, Nakashima K, Yonemoto T (2013) Simultaneous production of high quality biodiesel and glycerin from Jatropha oil using ion-exchange resins as catalysts and adsorbent. Bioresour Technol 142:732–736

    Article  CAS  PubMed  Google Scholar 

  • Srivastava A, Prasad R (2000) Triglycerides-based diesel fuels. Renew Sustain Energy Rev 4:111–133

    Article  CAS  Google Scholar 

  • Su ES, Zhang JG, Huang MG, Wei DZ (2015) Optimization of the lipase-catalyzed irreversible transesterification of Pistacia chinensis Bunge seed oil for biodiesel production. Russ Chem Bull 63(12):2719–2728

    Article  CAS  Google Scholar 

  • Sun CW, Jia LM, Xi BY, Wang LC, Weng XH (2017) Natural variation in fatty acid composition of Sapindus spp. seed oils. Ind Crops Prod 102:97–104

    Article  CAS  Google Scholar 

  • Ullah F, Nosheen A, Hussain I, Bano A (2009) Base catalyzed transesterification of wild apricot kernel oil for biodiesel production. Afr J Biotechnol 8(14):3309–3313

    Google Scholar 

  • Wang LB, Yu HY (2012) Biodiesel from Siberian apricot (Prunus sibirica L.) seed kernel oil. Bioresour Technol 112:355–358

    Article  CAS  PubMed  Google Scholar 

  • Yao ZY, Qi JH, Yin LM (2013) Biodiesel production from Xanthoceras sorbifolia in China: opportunities and challenges. Renew Sustain Energy Rev 24:57–65

    Article  CAS  Google Scholar 

  • Zhang S, Zu YG, Fu YJ, Luo M, Zhang DY, Efferth T (2010) Rapid microwave-assisted transesterification of yellow horn oil to biodiesel using a heteropolyacid solid catalyst. Bioresour Technol 101(3):931–936

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Ao.

Additional information

Project funding: The study was financially supported by the International S&T Cooperation Program of China (2014DFA31140).

The online version is available at http://www.springerlink.com

Corresponding editor: Zhu Hong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Z., Zhang, K., Ao, Y. et al. Evaluation of biodiesel from Xanthoceras sorbifolia Bunge seed kernel oil from 13 areas in China. J. For. Res. 30, 869–877 (2019). https://doi.org/10.1007/s11676-018-0683-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-018-0683-9

Keywords

Navigation