Molecular cloning and characterization of a lipid transfer protein gene (PsLTP1) from Pinus sylvestris (L.)

  • Nataliya Hrunyk
  • Valentina Kovaleva
  • Hryhoriy Krynytskyy
  • Ivan Gout
  • Francisco Amil-Ruiz
  • Juan Muñoz-Blanco
  • José Luis Caballero
  • Roman Gout
Short Communication
  • 21 Downloads

Abstract

Plant nonspecific lipid transfer proteins (nsLTPs) are widely distributed through plant kingdom and are characterized by the presence of a central hydrophobic cavity, suitable for binding various hydrophobic molecules. Despite extensive research on nsLTP in different plant species, mostly angiosperm, and the great diversity of physiological processes in which they seem to be involved, their exact functions still remain unclear. Also, very limited experimental data are available on nsLTP in gymnosperm. In this study, we report for the first time on the molecular cloning of nsLTP, from Pinus sylvestris L. (PsLTP1, GenBank accession JN980402.1) and the expression pattern of PsLTP1 during ontogenesis and in response to environmental stress conditions. Total RNA from roots of 7-day old pine seedlings was used to isolate the cDNA clone, corresponding to Scots pine lipid transfer protein. The open reading frame of PsLTP1 consists of 372 bp encoding a protein of 123 amino acids. Amino acid sequence alignment revealed that mature PsLTP1 shares high level of similarity with nsLTP from other conifers and with well-studied nsLTPs from angiosperms. The PsLTP1 contains a 27-amino-acid N-terminal signal sequence and presents all the features of a plant nsLTP. Amino acid comparison analysis and 3D structure prediction showed that PsLTP1 is a type 1 nsLTP. The results of the expression analysis of Scots pine PsLTP1 gene revealed that its transcripts accumulate in actively growing tissues. Furthermore, transcription of PsLTP1 was upregulated in response to cold and salt treatments, and downregulated during acidic, osmotic and water stresses.

Keywords

Scots pine Nonspecific lipid transfer protein (nsLTP) Molecular cloning Expression Abiotic stresses 

References

  1. Adomas A et al (2008) Comparative analysis of transcript abundance in Pinus sylvestris after challenge with a saprotrophic, pathogenic or mutualistic fungus. Tree Physiol 28:885–897CrossRefPubMedGoogle Scholar
  2. Ambrose C, DeBono A, Wasteneys G (2013) Cell geometry guides the dynamic targeting of apoplastic GPI-linked lipid transfer protein to cell wall elements and cell borders in Arabidopsis thaliana. PLoS ONE 8(11):e81215CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795CrossRefPubMedGoogle Scholar
  4. Boutrot F, Guirao A, Alary R, Joudrier P, Gautier MF (2008) Genome-wide analysis of the rice and Arabidopsis non-specific lipid transfer protein (nsLtp) gene families and identification of wheat nsLtpgenes by EST data mining. BMC Genom 9:86–105CrossRefGoogle Scholar
  5. Carvalho AO, Gomes VM (2007) Role of plant lipid transfer proteins in plant cell physiology—a concise review. Peptides 28:1144–1153CrossRefGoogle Scholar
  6. Carvalho AO, Souza-Filho GA, Ferreira BS, Branco AT, Araújo IS, Fernandes KV, Retamal CA, Gomes VM (2006) Cloning and characterization of a cowpea seed lipid transfer protein cDNA: expression analysis during seed development and under fungal and cold stresses in seedlings’ tissues. Plant Physiol Biochem 44:732–742CrossRefPubMedGoogle Scholar
  7. Chang SJ, Puryear J, Cairney J (1993) A simple and efficient method for isolating rna from pine trees. Plant Mol Biol Report 11:113–116CrossRefGoogle Scholar
  8. Cheng CS, Samuel D, Liu YJ, Shyu JC, Lai SM, Lin KF, Lyu PC (2004) Binding mechanism of nonspecific lipid transfer proteins and their role in plant defense. Biochemistry 43:13628–13636CrossRefPubMedGoogle Scholar
  9. DeBono A, Yeats TH, Rose JKC, Bird D, Jetter R, Kunst L, Samuels L (2009) Arabidopsis LTPG is a GPI anchored lipid transfer protein required for export of lipids to the plant surface. Plant Cell 21:1230–1238CrossRefPubMedPubMedCentralGoogle Scholar
  10. Douliez JP, Michon T, Elmorjani K, Marion D (2000) Mini review: structure, biological and technological functions of lipid transfer proteins and indolines, the major lipid binding proteins from cereal kernels. J Cereal Sci 32:1–20CrossRefGoogle Scholar
  11. Douliez JP, Jegou S, Pato C, Molle D, Tran V, Marion D (2001) Binding of two mono-acylated lipid monomers by the barley lipid transfer protein, LTP1, as viewed by fluorescence, isothermal titration calorimetry and molecular modelling. Eur J Biochem 268:384–388CrossRefPubMedGoogle Scholar
  12. Edstam MM, Viitanen L, Salminen TA, Edqvist J (2011) Evolutionary history of the non-specific lipid transfer proteins. Mol Plant 4:947–964CrossRefPubMedGoogle Scholar
  13. Edstam MM, Blomqvist K, Eklof A, Wennergren U, Edqvist J (2013) Coexpression patterns indicate that GPI-anchored non-specific lipid transfer proteins are involved in accumulation of cuticular wax, suberin and sporopollenin. Plant Mol Biol 83:625–649CrossRefPubMedGoogle Scholar
  14. Edstam MM, Laurila M, Höglund A, Raman A, Dahlström KM, Salminen TA, Edqvist J, Blomqvist K (2014) Characterization of the GPI-anchored lipid transfer proteins in the moss Physcomitrella patens. Plant Physiol Biochem 75:55–69CrossRefPubMedGoogle Scholar
  15. Eklund DM (2003) Localization of nonspecific lipid transfer proteins correlate with programmed cell death responses during endosperm degradation in Euphorbia lagascae seedlings. Plant Physiol 132:1249–1259CrossRefPubMedPubMedCentralGoogle Scholar
  16. García-Olmedo F, Molina A, Segura A, Moreno M (1995) The defensive role of nonspecific lipid-transfer proteins in plants. Trends Microbiol 3:72–74CrossRefPubMedGoogle Scholar
  17. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788CrossRefPubMedPubMedCentralGoogle Scholar
  18. Goyala RK, Mattoo AK (2014) Multitasking antimicrobial peptides in plant development and host defense against biotic/abiotic stress. Plant Sci 228:135–149CrossRefGoogle Scholar
  19. Guan MX, Chai RH, Kong X, Liu XM (2013) Isolation and characterization of a lipid transfer protein gene (BplLTP1) from Betula platyphylla. Plant Mol Biol Report 31:991–1001CrossRefGoogle Scholar
  20. Guo L, Yang HB, Zhang XY, Yang SH (2013) Lipid transfer protein 3 as a target of MYB96 mediates freezing and drought stress in Arabidopsis. J Exp Bot 64:1755–1767CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hensiruk SA (2002) Forests of Ukraine. Shevchenko Scientific Society, Ukrainian State university of Forestry and Wood Technology, LvivGoogle Scholar
  22. José-Estanyol M, Gomis-Ruth FX, Puigdomenech P (2004) The eight-cysteine motif, a versatile structure in plant proteins. Plant Physiol Biochem 42:355–365CrossRefPubMedGoogle Scholar
  23. Jung HW, Kim W, Hwang BK (2003) Three pathogen-inducible genes encoding lipid transfer protein from pepper are differentially activated by pathogens, abiotic, and environmental stresses. Plant, Cell Environ 26:915–928CrossRefGoogle Scholar
  24. Kader JC (1996) Lipid transfer proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 47:627–654CrossRefPubMedGoogle Scholar
  25. Kalla R, Shimamoto K, Potter R, Nielsen PS, Linnestad C, Olsen OA (1994) The promoter of the barley aleurone-specific gene encoding a putative 7 kDa lipid transfer protein confers eleurone cell-specific expression in transgenic rice. Plant J 6:849–856CrossRefPubMedGoogle Scholar
  26. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kovaleva V, Kiyamova R, Cramer R, Krynytskyy H, Gout I, Filonenko V, Roman G (2009) Purification and molecular cloning of antimicrobial peptides from Scots pine seedlings. Peptides 30:2136–2143CrossRefPubMedGoogle Scholar
  28. Maldonado AM, Doerner P, Dixon RA, Lamb CJ, Cameron RK (2002) A putative lipid transfer protein involved in systemic resistance signaling in Arabidopsis. Nature 419:399–403CrossRefPubMedGoogle Scholar
  29. Pagnussat L, Burbach C, Baluška F, de la Canal L (2012) An extracellular lipid transfer protein is relocalized intracellularly during seed germination. J Exp Bot 63:6555–6563CrossRefPubMedGoogle Scholar
  30. Park S, Lee J, Shin S, Park Y, Lee S, Hahm K (2007) Characterization of a heat-stable protein with antimicrobial activity from Arabidopsis thaliana. Biochem Biophys Res Commun 362:562–567CrossRefPubMedGoogle Scholar
  31. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612CrossRefPubMedGoogle Scholar
  32. Pyee J, Yu HS, Kolattukudy PE (1994) Identification of a lipid transfer protein as the major protein in the surface wax of broccoli (Brassica oleracea) leaves. Arch Biochem Biophys 311:460–468CrossRefPubMedGoogle Scholar
  33. Sabala I, Elfstrand M, Farbos I, Clapham D, von Arnold S (2000) Tissue-specific expression of Pa18, a putative lipid transfer protein gene, during embryo development in Norway spruce (Picea abies). Plant Mol Biol 42:461–478CrossRefPubMedGoogle Scholar
  34. Samuel D, Liu YJ, Cheng CS, Lyu PC (2002) Solution structure of plant nonspecific lipid transfer protein-2 from rice (Oryza sativa). J Biol Chem 277:35267–35273CrossRefPubMedGoogle Scholar
  35. Sawano Y, Hatano K-I, Miyakawa T, Komagata H, Miyauchi Y, Yamazaki H, Tanokura M (2008) Proteinase inhibitor from ginkgo seeds is a member of the plant nonspecific lipid transfer protein gene family. Plant Physiol 146:1909–1919CrossRefPubMedPubMedCentralGoogle Scholar
  36. Scheurer S, Lauer I, Foetisch K, San Miguel Moncin M, Retzek M, Hartz C, Enrique E, Lidholm J, Cistero-Bahima A, Vieths S (2004) Strong allergenicity of Pru av 3, the lipid transfer protein from cherry, is related to high stability against thermal processing and digestion. J Allergy Clin Immunol 114:900–907CrossRefPubMedGoogle Scholar
  37. Sels J, Mathys J, De Coninck BMA, Cammue BPA, De Bolle MFC (2008) Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiol Biochem 46:941–950CrossRefPubMedGoogle Scholar
  38. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539CrossRefPubMedPubMedCentralGoogle Scholar
  39. Sterk P, Booij H, Schellekens GA, Van Kammen A, De Vries SC (1991) Cell-specific expression of the carrot EP2 lipid transfer protein gene. Plant Cell 3:907–921CrossRefPubMedPubMedCentralGoogle Scholar
  40. Tassin-Moindrot S, Caille A, Douliez JP, Marion D, Vovelle F (2000) The wide binding properties of a wheat nonspecific lipid transfer protein. Solution structure of a complex with prostaglandin B2. Eur J Biochem 267:1117–1124CrossRefPubMedGoogle Scholar
  41. Thoma S, Hecht U, Kippers A, Botella J, De Vries S, Somerville C (1994) Tissue-specific expression of a gene encoding a cell wall-localized lipid transfer protein from Arabidopsis. Plant Physiol 105:35–45CrossRefPubMedPubMedCentralGoogle Scholar
  42. Torres-Schumann S, Godoy JA, Pintor-Toro JA (1992) A probable lipid transfer protein gene is induced by NaCl in stems of tomato plants. Plant Mol Biol Report 18:749–757CrossRefGoogle Scholar
  43. Trevino MB, O’Connell MA (1998) Three drought-responsive members of the nonspecific lipid-transfer protein gene family in Lycopersicon pennellii show different developmental patterns of expression. Plant Physiol 116:1461–1468CrossRefPubMedPubMedCentralGoogle Scholar
  44. Veluthakkal R, Dasgupta MG (2010) Pathogenesis-related genes and proteins in forest tree species. Trees 24:993–1006CrossRefGoogle Scholar
  45. Vroemen CW, Langeveld S, Mayer U, Ripper G, Jurgens G, Van Kammen A, De Vries SC (1996) Pattern Formation in the Arabidopsis embryo revealed by position-specific lipid transfer protein gene expression. Plant Cell 8:783–791CrossRefPubMedPubMedCentralGoogle Scholar
  46. Wang HW, Hwang SG, Karuppanapandian T, Liu A, Kim W, Jang CS (2012) Insight into the molecular evolution of non-specific lipid transfer proteins via comparative analysis between rice and sorghum. DNA Res 19:179–194CrossRefPubMedPubMedCentralGoogle Scholar
  47. Yang JY, Yan RX, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER Suite: protein structure and function prediction. Nat Methods 12:7–8CrossRefPubMedPubMedCentralGoogle Scholar
  48. Yubero-Serrano E-M, Moyano E, Medina-Escobar N, Muñoz-Blanco J, Caballero JL (2003) Identification of a strawberry gene encoding a non-specific lipid transfer protein that responds to ABA, wounding and cold stress. J Exp Bot 54:1865–1877CrossRefPubMedGoogle Scholar

Copyright information

© Northeast Forestry University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Nataliya Hrunyk
    • 1
    • 2
  • Valentina Kovaleva
    • 1
  • Hryhoriy Krynytskyy
    • 1
  • Ivan Gout
    • 3
  • Francisco Amil-Ruiz
    • 2
  • Juan Muñoz-Blanco
    • 2
  • José Luis Caballero
    • 2
  • Roman Gout
    • 1
  1. 1.Laboratory of Molecular-Genetic Markers in Woody PlantsUkrainian National Forestry UniversityLvivUkraine
  2. 2.Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3-Campus de Rabanales, Edificio Severo Ochoa-C6Universidad de CórdobaCórdobaSpain
  3. 3.Department of Structural and Molecular BiologyUniversity College LondonLondonUK

Personalised recommendations