Journal of Forestry Research

, Volume 29, Issue 3, pp 565–574 | Cite as

In vitro propagation of conifers using mature shoots

Review Article
  • 105 Downloads

Abstract

Micropropagation mostly leads to the production of innumerable true-to-type plants. However, establishing pathogen-free explants through in vitro culture requires a precise management of time for the exposure of explants to antimicrobial chemicals. The application of antimicrobial chemicals must also be managed to impose the least injury on explants. This review discusses the contributions of micropropagation procedures, explant types, subculture duration, media ingredients and plant growth regulators to the in vitro response of conifer explants. Even though regeneration from mature conifer explants such as mature shoots are laborious, the chances of variation, induced in vitro, are unlikely.

Keywords

Conifers Decontamination Micropropagation Tissue culture 

Notes

Acknowledgements

I thank Dr. Jenna E. Gallegos (Department of Molecular and Cellular Biology, University of California, Davis) for critically reading the manuscript. Mohsen Hamedpour-Darabi is thanked for editing the English.

References

  1. Aitken-Christie J, Singh A, Davies H (1988) Multiplication of meristematic tissue: a new tissue culture system for radiata pine. In: Hanover JW, Keathley DE (eds) Genetic manipulation of woody plants, vol 44. Plenum Publishing Corporation, New York, pp 413–432Google Scholar
  2. Alonso P, Cortizo M, Cantón FR, Fernández B, Rodríguez A, Centeno ML, Cánovas FM, Ordás RJ (2007) Identification of genes differentially expressed during adventitious shoot induction in Pinus pinea cotyledons by subtractive hybridization and quantitative PCR. Tree Physiol 27:1721–1730CrossRefPubMedGoogle Scholar
  3. Arya S, Kalia RK, Arya ID (2000) Induction of somatic embryogenesis in Pinus roxburghii Sarg. Plant Cell Rep 19:775–780CrossRefGoogle Scholar
  4. Bastol B, Jasik J, Mantell S (2000) In vitro propagation of a Himalayan pine P. wallichiana A. B. Jacks. Curr Sci 78:338–341Google Scholar
  5. Becwar M, Nagmani R, Wann S (1990) Initiation of embryogenic cultures and somatic embryo development in loblolly pine (Pinus taeda). Can J For Res 20:810–817CrossRefGoogle Scholar
  6. Bigot C, Engelmann F (1987) Vegetative propagation in vitro of Cunninghamia lanceolata (Lamb.) Hook. In: Bonga JM, Durzan DJ (eds) Cell and tissue culture in forestry, case histories, gymnosperms, angiosperms and palms, vol 3. Martinus Nijhoff, The Hague, pp 114–127CrossRefGoogle Scholar
  7. Bonga JM, Klimaszewska KK, von Aderkas P (2010) Recalcitrance in clonal propagation, in particular of conifers. Plant Cell Tissue Organ Cult 100:241–254CrossRefGoogle Scholar
  8. Boulay M (1979) Multiplication et clonage rapide du Sequoia sempervirens par la culture in vitro. Annales de Recherche Sylvicole, AFOCEL, pp 49–55Google Scholar
  9. Bourgin JP, Nitsch JP (1967) Obtention de Nicotiana haploides à partir d’étamines cultivées in vitro. Ann Physiol Vég 9:337–338Google Scholar
  10. Buckley PM, DeWild TN, Reed BM (1995) Characterization and identification of bacteria isolated from micropropagated mint plant. In Vitro Cell Dev Biol Plant 31:58–64CrossRefGoogle Scholar
  11. Burrows GE, Doley DD, Haines RJ, Nikles DG (1988) In vitro propagation of Araucaria cunninghamii and other species of the Araucariaceae via axillary meristems. Aust J Bot 36:665–676CrossRefGoogle Scholar
  12. Cassells AC (1991) Problems in tissue culture: culture contamination. In: Debergh PC, Zimmerm RH (eds) Micropropagation technology and application. Kluwer Academic Publishers, Dordrecht, pp 31–44CrossRefGoogle Scholar
  13. Chanway C (1998) Bacterial endophytes: ecological and practical implication. Sydowia 50:149–170Google Scholar
  14. Cortizo M, Cuestam C, Centeno ML, Rodriguez A, Fernandez B, Ordas R (2009a) Benzyladenine metabolism and temporal compedence of Pinus pinea cotyledons to form buds in vitro. J Plant Physiol 166:1069–1076CrossRefPubMedGoogle Scholar
  15. Cortizo M, De Diego N, Ordás R, Moncaleán P (2009b) Micropropagation of adult Stone Pine (Pinus pinea L.). Trees 23:835–842CrossRefGoogle Scholar
  16. De Diego N, Montalbán IA, Fernández E, Moncaleán P (2008) In vitro regeneration of Pinus pinaster adult trees. Can J For Res 38:2607–2615CrossRefGoogle Scholar
  17. De Diego N, Montalbán IA, Moncaleán P (2010) In vitro regeneration of adult Pinus sylvestris L. trees. S Afr J Bot 76:158–162CrossRefGoogle Scholar
  18. Debergh PC, Vanderschaeghe AM (1988) Some symptoms indicating the presence of bacterial contaminants in plant tissue culture. Acta Hortic 255:77–81CrossRefGoogle Scholar
  19. Dodds JH, Roberts WL (1981) Some inhibitory effectors on gentamicin on plant tissue culture. In Vitro 17:467–470CrossRefGoogle Scholar
  20. Dos Santos ALW, Silveria V, Steinr N, Vidor M, Guerra MP (2002) Somatic embryogenesis in Parana Pine (Araucaria angustifolia (Bert.) O. Kuntze). Braz Arch Biol Technol 45:97–106CrossRefGoogle Scholar
  21. Drake PMW, John A, Power JB, Davey MR (1997) Expression of the gus A gene in embryogenic cell lines of Sitka spruce following Agrobacterium-mediated transformation. J Exp Bot 48:151–155CrossRefGoogle Scholar
  22. Driver JA, Kuniyuki AH (1984) In vitro propagation of paradox walnut root stocks. Hortic Sci 19:507–509Google Scholar
  23. Ellis DD, Lazaroff WR, Roberts DR, Flinn BS, Webb DT (1989) The effect of antibiotics on elongation and callus and bud formation from embryogenic tissue of Picea glauca. Can J For Res 19:1343–1346CrossRefGoogle Scholar
  24. Ewald D, Suss R (1993) A system for repetable formation of elongating adventitious buds in Norway spruce tissue cultures. Silvae Genetica 42:169–175Google Scholar
  25. Ewald D, Kretzschmar U, Chen Y (1997) Continuous micropropagation of juvenile larch from different species via adventitious bud formation. Biol Plant 39:321–329CrossRefGoogle Scholar
  26. Ewald D, Zaspel I, Naujoks G, Behrendt U (2000) Endogenous bacteria in tissue cultures of conifers—appearance and action. Acta Hortic 530:137–144CrossRefGoogle Scholar
  27. Falkiner, FR (1990) The criteria for choosing an antibiotic for control of bacteria in plant tissue culture in TCL. Assoc Plant Tiss Cult Newsl 60:13–23Google Scholar
  28. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158CrossRefPubMedGoogle Scholar
  29. Gresshoff PM, Doy CH (1972) Development and differentiation of haploid Lycopersicon esculentum (tomato). Planta 107:161–170CrossRefPubMedGoogle Scholar
  30. Gupta PK, Durzan DJ (1985) Shoot multiplication from mature trees of Douglas-fir (Pseudotsuga menziesii) and sugar pine (Pinus lambertiana). Plant Cell Rep 4:177–179CrossRefPubMedGoogle Scholar
  31. Haines RJ, de Fossard RA (1977) Propagation of Hoop pine (Araucaria cunninghamii) by organ culture. Acta Hortic 78:297–302CrossRefGoogle Scholar
  32. Harry IS, Thompson MR, Lu CY, Thorpe TA (1987) In vitro plantlet formation from embryonic explants of eastern white cedar (Thuja occidentalis L.). Tree Physiol 3:273–283CrossRefPubMedGoogle Scholar
  33. Hohtola A (1988) Seasonal changes in explant viability and contamination of Scots pine tissue cultures from mature Scots pine. Plant Cell Tissue Organ Cult 15:211–222CrossRefGoogle Scholar
  34. Holford P, Newbury HJ (1992) The effects of antibiotics and their breakdown products on the in vitro growth of Antirrhinum majus. Plant Cell Rep 11:93–96PubMedGoogle Scholar
  35. Holland L, Gemmell JE, Chanty JA, Walter C (1997) Foreign gene transfer into Pinus radiata cotyledons by Agrobacterium tumefaciens. NZ J Forest Sci 27:289–304Google Scholar
  36. Hood EE, Clapham DH, Ekberg I, Johanson T (1990) T-DNA presence and opine production in tumors of Picea abies (L.) Karst induced by Agrobacterium tumefaciens A281. Plant Mol Biol 14:111–117CrossRefPubMedGoogle Scholar
  37. Humara JM, Ordas RJ (1999) The toxicity of antibiotics and herbicides on in vitro adventitious shoot formation on Pius pinea L. cotyledone. In Vitro Cell Dev Biol Plant 35:339–343CrossRefGoogle Scholar
  38. Keathley DE (1984) In: Proceedings of the international symposium of recent advances in forest biotechnology, Michigan Biotechnology Institute, Traverse City, Michigan, pp 58–63, 10–13 June 1984Google Scholar
  39. Kolevska-Pletikapic B, Buturovic-Deric Z (1995) Regeneration of Picea omarika plants via organogenesis. Plant Cell Tissue Organ Cult 41:189–192CrossRefGoogle Scholar
  40. Laukkanen H, Soini H, Kontunen-Soppela S, Hohtola A, Viljanen M (2000) A mycobacterium isolated from tissue cultures of mature Pinus sylvestris interferes with growth of Scots pine seedlings. Tree Physiol 20:915–920CrossRefPubMedGoogle Scholar
  41. Le-Feuvre R, Triviño C, Sabja AM, Bernier-Cardou M, Moynihan MR, Klimaszewska K (2013) Organic nitrogen composition of the tissue culture medium influences Agrobacterium tumefaciens growth and the recovery of transformed Pinus radiata embryonal masses after cocultivation. In Vitro Cell Dev Biol Plant 49:30–40CrossRefGoogle Scholar
  42. Leifert C, Waites WM, Nicholas LR (1989) Bacterial contamination of micropropagated plant tissue cultures. J Appl Bacteriol 67:353–361CrossRefGoogle Scholar
  43. Leifert C, Camotla H, Wright SM, Waites B, Cheyne VA, Waites WM (1991) Elimination of Lactobacillus plantarum, Corynebacterium spp. Staphylococcus saprophyticus and Pseudomonas paucimobilis from micropropagated Hemerocallis, Choisya and Delphinium cultures using antibiotics. J Appl Bacteriol 71:307–330CrossRefGoogle Scholar
  44. Leifert C, Camotla H, Wailes WM (1992) Effect of combinations of antibiotics on micropropagated Clematis, Delphinium, Hosta, Iris and Photinia. Plant Cell Tissue Organ Cult 29:153–160CrossRefGoogle Scholar
  45. Levee V, Lelu MA, Jouanin L, Cornu D, Pilati G (1997) Agrobacterium tumefaciens-mediated transformation of hybrid larch (Larix kaempferi × L. decidua) and transgenic plant regeneration. Plant Cell Rep 16:680–685CrossRefGoogle Scholar
  46. López M, Humara JM, Rodríguez R, Ordás RJ (2000) Factors involved in Agrobacterium tumefaciens-mediated gene transfer into Pinus nigra Arn. ssp. Salzmannii (Dunal) Franco. Euphytica 114:195–203CrossRefGoogle Scholar
  47. López-Escamilla AL, Olguín-Santos LP, Márquez J, Chávez VM, Bye R (2000) Adventitious bud formation from mature embryos of Picea chihuahuana Martínez, an endangered Mexican spruce tree. Ann Bot 86:921–927CrossRefGoogle Scholar
  48. Loureiro J, Capelo A, Brito G, Rodriguez E, Silva S, Pinto G, Santos C (2007) Micropropagation of Juniperus phoenicea from adult plant explants and analysis of ploidy stability using flow cytometry. Biol Plant 51:7–14CrossRefGoogle Scholar
  49. Malá J, Pavingerová D, Cvrčková H, Bříza J, Dostál J, Šíma P (2009) Tolerance of Norway spruce (Picea abies [L.] Karst.) embryogenic tissue to penicillin, carbapenem and aminoglycoside antibiotics. J For Sci 55:156–161CrossRefGoogle Scholar
  50. Malabadi RB, Van Staden J (2005) Somatic embryogenesis from vegetative shoot apices of mature trees of Pinus patula. Tree Physiol 25:11–16CrossRefPubMedGoogle Scholar
  51. McCown BH, Lloyd G (1981) Woody plant medium (WPM)—a mineral nutrient formulation for microculture for woody plant species. Hortic Sci 16:453Google Scholar
  52. Mendes AFS, Cidade LC, de Oliveira MLP, Otoni WC, Soares-Filho WS, Costa MGC (2009) Evaluation of novel beta-lactam antibiotics in comparison to cefotaxime on plant regeneration of Citrus sinensis L. Osb. Plant Cell Tissue Organ Cult 97:331–336CrossRefGoogle Scholar
  53. Moncaleán P, Alonso P, Centeno ML, Cortizo M, Rodríguez A, Fernández B, Ordás RJ (2005) Organogenic responses of Pinus pinea cotyledons to hormonal contents: BA metabolism and cytokinin content. Tree Physiol 25:1–19CrossRefPubMedGoogle Scholar
  54. Montalbán IA, De Diego N, Igartua EA, Setién A, Moncaleán P (2011) A combined pathway of somatic embryogenesis and organogenesis to regenerate radiata pine plants. Plant Biotechnol Rep 5:177–186CrossRefGoogle Scholar
  55. Murashige T (1974) Plant propagation through tissue culture. Ann Rev Plant Physiol 25:135–166CrossRefGoogle Scholar
  56. Murashige, T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15:473–497CrossRefGoogle Scholar
  57. Nauerby B, Billing K, Wyndaele R (1997) Influence of the antibiotic timentin on plant regeneration compared to carbenicillin and cefotaxime in concentrations suitable for elimination of Agrobacterium tumefaciens. Plant Sci 123:169–177CrossRefGoogle Scholar
  58. Ogawa Y, Mii M (2005) Evaluation of 12 b-lactam antibiotics for Agrobacterium-mediated transformation through in planta antibacterial activities and phytotoxicities. Plant Cell Rep 23:736–743CrossRefPubMedGoogle Scholar
  59. Piola F, Rohr R, Heizmann P (1999) Rapid detection of genetic variation within and among in vitro propagated cedar (Cedrus libani Loudon) clones. Plant Sci 141:159–163CrossRefGoogle Scholar
  60. Prehn D, Serrano C, Mercado A, Stange C, Barrales L, Arce-Johnson P (2003) Regeneration of whole plants from apical meristems of Pinus radiata. Plant Cell Tissue Organ Cult 73:91–94CrossRefGoogle Scholar
  61. Pulido CM, Harry IS, Thorpe TA (1992) Optimization of bud induction in cotyledonary explants of Pinus canariensis. Plant Cell Tissue Organ Cult 29:247–255CrossRefGoogle Scholar
  62. Quoirin M, Lepoivre P (1977) Elude de milieu adaptes aux cultures in vitro de Prunus. Acta Hortic 78:437–442CrossRefGoogle Scholar
  63. Reed BM, Tanprasert P (1995) Detection and control of bacterial contaminations of plant tissue culture: a review of recent literature. Plant Tissue Cult Biotechnol 1:137–142Google Scholar
  64. Renau-Morata B, Ollero J, Arrillagam I, Segura J (2005) Factor influencing axillary proliferation and adventitious budding in cedar. Tree Physiol 25:477–486CrossRefPubMedGoogle Scholar
  65. Rugini E (1984) In vitro propagation of some olive (Olea europaea L. var. sativa) cultivars with different root-ability, and medium development using analytical data from developing shoots and embryos. Sci Hortic 24:123–134CrossRefGoogle Scholar
  66. Saravitz CH, Blazich FA, Amerson HV (1991) In vitro propagation of virginia pine from cotyledons. J Am Soc Hortic Sci 116:362–365Google Scholar
  67. Sarma KS, Evans NE, Selby CH (1995) Effect of carbenicillin and cefotaxime on somatic embryogenesis of Sitka spruce (Picea sitchensis (Bong.) Carr.). J Exp Bot 46:1779–1781CrossRefGoogle Scholar
  68. Sarmast MK (2016) Genetic transformation and somaclonal variation in conifers—a review. Plant Biotechnol Rep 10:309–325CrossRefGoogle Scholar
  69. Sarmast MK, Salehi H, Khosh-Khui M, Niazi A, Bastani R (2010) Nano silver functionalization of Agrobacterium mediated transformation with companionship of nanobiotechnology. Symposium on nanotechnologies applied to biosystems engineering and the environment. CIGR. Québec City, 13–17 June, CanadaGoogle Scholar
  70. Sarmast MK, Salehi H, Khosh-Khui M (2011) Nano silver treatment is effective in reducing bacterial contamination of Araucaria excelsa R. Br. var. glauca explants. Acta Biol Hung 62:477–484CrossRefPubMedGoogle Scholar
  71. Sarmast MK, Salehi H, Ramzani Abolimoghadam AA, Niazi A, Khosh-Khui M (2012a) RAPD fingerprint to appraise the genetic fidelity of in vitro propagated Araucaria excelsa R. Br. var. glauca plantlets. Mol Biotechnol 50:181–188CrossRefPubMedGoogle Scholar
  72. Sarmast MK, Salehi H, Khosh-Khui M (2012b) Micropropagation of Araucaria excelsa R. Br. var. glauca Carrière from orthotropic stem explants. Physiol Mol Biol Plants 18:265–271CrossRefPubMedCentralPubMedGoogle Scholar
  73. Sarmast MK, Niazi A, Salehi H, Abolimoghadam A (2015) Silver nanoparticles affect ACS expression in Tecomella undulata in vitro culture. Plant Cell Tiss Organ Cult 121:227–236CrossRefGoogle Scholar
  74. Sehgal L, Sehgal OP, Khosla PK (1989) Micropropagation of Araucaria columnaris Hook. Ann Sci For 46:158–160CrossRefGoogle Scholar
  75. Selby C, Watson S, Harvey BMR (2005) Morphogenesis in Sitka spruce (Picea sitchensis (Bong.) Carr.) bud cultures—tree maturation and explants from epicormic shoots. Plant Cell Tissue Organ Cult 83:279–285CrossRefGoogle Scholar
  76. Skoog F (1944) Growth and organ formation in tobacco tissue cultures. Am J Bot 31:19–24CrossRefGoogle Scholar
  77. Stojicic D, Budimir S (2004) Cytokinin-mediated axillary shoots formation in Pinus heldreichii. Biol Plant 48:477–479CrossRefGoogle Scholar
  78. Stojicic D, Budimir S, Culafic L (1999) Micropropagation of Pinus heldrechii. Plant Cell Tissue Organ Cult 59:147–150CrossRefGoogle Scholar
  79. Tamta S, Palni LMS (2004) Studies of in vitro propagation of Himalayan cedar (Cedrus deodara) using zygotic embryos and stem segments. Indian J Biotechnol 3:209–215Google Scholar
  80. Tang W, Newton RJ (2005) Plant regeneration from callus cultures derived from mature zygotic embryos in white pine (Pinus strobus L.). Plant Cell Rep 24:1–9CrossRefPubMedGoogle Scholar
  81. Tang W, Sederoff R, Whetten R (2001) Regeneration of transgenic loblolly pine (Pinus taeda L.) from zygotic embryos transformed with Agrobacterium tumefaciencs. Planta 213:981–989CrossRefPubMedGoogle Scholar
  82. Tang W, Newton RJ, Charles TM (2006) Plant regeneration through multiple adventitious shoot differentiation from callus cultures of slash pine (Pinus elliottii). J Plant Physiol 163:98–101CrossRefPubMedGoogle Scholar
  83. Tang W, Harris LC, Outhavong V, Newton RJ (2004) The effect of different plant growth regulators on adventitious shoot formation from Virginia pine (Pinus virginiana) zygotic embryo explants. Plant Cell Tiss Org Cult 78:237–240CrossRefGoogle Scholar
  84. Thorpe TA (1985) Application of tissue culture to forest tree improvement. For Chron 61:436–438CrossRefGoogle Scholar
  85. Thorpe TA (2007) History of plant tissue culture. Mol Biotech 37:169–180CrossRefGoogle Scholar
  86. Timmis R, Ritchie GA (1984) In: Proceedings of the international symposium of recent advances in forest biotechnology, Michigan Biotechnology Institute, Traverse City, Michigan, pp 37–46, 10–13 June 1984Google Scholar
  87. Traore A, Xing Z, Bonser A, Carlson J (2005) Optimizing a protocol for sterilization and in vitro establishment of vegetative bud from mature Douglas fir trees. HortScience 40:1464–1468Google Scholar
  88. Valdés AE, Ordás RJ, Fernández B, Centeno ML (2001) Relationships between hormonal content sand the organogenic response in Pinus pinea cotyledons. Plant Physiol Biochem 39:377–384CrossRefGoogle Scholar
  89. Vidal N, Arellano G, San-Jose MC, Vieitez AM, Ballester A (2003) Developmental stages during the rooting of in vitro cultured Quercus robur shoots from material of juvenile and mature origin. Tree Physiol 23:1247–1254CrossRefPubMedGoogle Scholar
  90. Villalobos-Amador E, Rodríguez-Hernández G, Pérez-Molphe-Balch E (2002) Organogenesis and Agrobacterium rhizogenes-induced rooting in Pinus maximartinezii Rzedowsky and P. pinceana Gordon. Plant Cell Rep 20:779–785CrossRefGoogle Scholar
  91. Viss PR, Brooks EM, Driver JA (1991) A simplified method for the control of bacterial contamination in woody plant tissue culture. In vitro Cell Dev Biol Plant 27:42CrossRefGoogle Scholar
  92. Webb KJ, Street HE (1977) Morphogenesis in vitro of Pinus and Picea. Acta Horticult 78:259–267CrossRefGoogle Scholar
  93. Yepes LM, Aldwinckle HS (1994) Factors that affect leaf regeneration efficiency in apple and effect of antibiotics in morphogenesis. Plant Cell Tissue Organ Cult 37:257–269Google Scholar
  94. Zhang Y, Wei Z, Xi M, Shi J (2006) Direct organogenesis and plantlet regeneration from mature zygotic embryos of masson pine (Pinus massoniana L.). Plant Cell Tissue Organ Cult 84:119–123CrossRefGoogle Scholar
  95. Zhu LH, Wu XQ, Qu HY, Ji J, Ye J (2010) Micropropagation of Pinus massoniana and mycorrhiza formation in vitro. Plant Cell Tissue Organ Cult 102:121–128CrossRefGoogle Scholar

Copyright information

© Northeast Forestry University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Horticultural Science, Faculty of Plant ProductionGorgan University of Agricultural Sciences and Natural Resources (GUASNR)GorganIran

Personalised recommendations