Skip to main content

Effect of species composition on ecosystem services in European boreal forest

Abstract

Forest management in several boreal countries is strongly focused on conifers because they are more productive, the technical quality of their stems is better, and their wood fibers are longer as compared to broadleaves. Favoring conifers in forest management leads to simple forest structures with low resilience and diversity. Such forests are risky in the face of climate change and fluctuating timber prices. Climate change increases the vitality of many forest pests and pathogens such as Heterobasidion spp. and Ips typographus L. which attack mainly spruce. Wind damages are also increasing because of a shorter period of frozen soil to provide a firm anchorage against storms. Wind-thrown trees serve as starting points for bark beetle outbreaks. Increasing the proportion of broadleaved species might alleviate some of these problems. This study predicts the long-term (150 years) consequences of current conifer-oriented forest management in two forest areas, and compared this management with silvicultural strategies that promote mixed forests and broadleaved species. The results show that, in the absence of damages, conifer-oriented forestry would lead to 5–10% higher timber yields and carbon sequestration. The somewhat lower carbon sequestration of broadleaved forests was counteracted by their higher albedo (reflectance). Mixed and broadleaf forests were better providers of recreational amenities. Species diversity was much higher in mixed stand and broadleaf-oriented silviculture at stand and forest levels. The analysis indicates that conifer-oriented forest management produces rather small and uncertain economic benefits at a high cost in resilience and diversity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Äijälä O, Koistinen A, Sved J, Vanhatalo K, Väisänen P (2014) METSÄNHOITO - Hyvän metsänhoidon suositukset [Recommendations for good silviculture]. Metsätalouden kehittämiskeskus Tapion julkaisuja (in Finnish), p 264. ISBN 978-952-6612-22-5

  • Anyomi KA, Raulier F, Bergeron Y, Mailly D (2013) The predominance of stand composition and structure over direct climatic and site effects in explaining aspen (Populus tremuloides Michaux) site index within boreal and temperate forests of western Quebec, Canada. For Ecol Manag 302:390–403

    Article  Google Scholar 

  • Anyomi KA, Raulier F, Bergeron Y, Mailly D, Girardin MB (2014) Spatial and temporal heterogeneity of forest site productivity drivers: a case study within the eastern boreal forests of Canada. Landsc Ecol 29:905–918. https://doi.org/10.1007/s10980-014-0026-y

    Article  Google Scholar 

  • Forrester D (2014) The spatial and temporal dynamics of species interactions in mixed—species forests: from pattern to process. For Ecol Manag 312:282–292

    Article  Google Scholar 

  • Griess V, Knoke T (2013) Bioeconomic modeling of mixed Norway spruce—European beech stands: economic consequences of considering ecological effects. Eur J For Res 132:511–522. https://doi.org/10.1007/s10342-013-0692-3

    Article  Google Scholar 

  • Griess VC, Acevedo R, Härtl F, Staupendahl K, Knoke T (2012) Does mixing tree species enhance stand resistance against natural hazards? A case study for spruce. For Ecol Manag 267:284–296. https://doi.org/10.1016/j.foreco.2011.11.035

    Article  Google Scholar 

  • Griess VC, Uhde B, Ham C, Seifert T (2016) Product diversification in South Africa’s commercial timber plantations: a way to mitigate investment risk. South For 78:145–150. https://doi.org/10.2989/20702620.2015.1136508

    Google Scholar 

  • Heinonen T, Pukkala T, Ikonen V-P, Peltola H, Venäläinen A, Duponts S (2009) Integrating the risk of wind damage into forest planning. For Ecol Manag 258:1567–1577

    Article  Google Scholar 

  • Heinonen T, Pukkala T, Mehtätalo L, Asikainen A, Kangas J, Peltola H (2017) Scenario analyses for the effects of harvesting intensity on development of forest resources, timber supply, carbon balance and biodiversity of Finnish forestry. For Policy Econ 80:80–98

    Article  Google Scholar 

  • Honkaniemi J (2017) Integrating mechanistic disturbance models and stand dynamics of Norway spruce. Diss For 241:1–41. https://doi.org/10.14214/df.241

    Google Scholar 

  • Jactel H, Bauhus J, Boberg J, Bonal D, Castagneyrol B, Gardiner B, Gonzalez-Olabarria JR, Koricheva J, Meurisse N, Brockerhoff EG (2017) Tree diversity drives forest stand resistance to natural disturbances. Curr For Rep 3:223–243. https://doi.org/10.1007/s40725-017-0064-1

    Google Scholar 

  • Knoke T, Wurm J (2006) Mixed forests and a flexible harvest policy: A problem for conventional risk analysis? Eur J For Res 125:303–315. https://doi.org/10.1007/s10342-006-0119-5

    Article  Google Scholar 

  • Knoke T, Stimm B, Ammer C, Moog M (2005) Mixed forests reconsidered: a forest economics contribution on an ecological concept. For Ecol Manag 213:102–116. https://doi.org/10.1016/j.foreco.2005.03.043

    Article  Google Scholar 

  • Knoke T, Ammer C, Stimm B, Mosandl R (2008) Admixing broadleaved to coniferous tree species: a review on yield, ecological stability and economics. Eur J For Res 127:89–101

    Article  Google Scholar 

  • Knoke T, Messerer K, Paul C (2017) The role of economic diversification in forest ecosystem management. Curr For Rep 3:93–106

    Google Scholar 

  • Kuusinen N, Tomppo E, Berninger F (2013) Linear unmixing of MODIS albedo composites to infer subpixel land cover type albedos. Int J Appl Earth Obs Geoinf 23:324–333

    Article  Google Scholar 

  • Laasasenaho J (1982) Taper curve and volume equations for pine spruce and birch. Commun Inst For Fenn 108:1–74

    Google Scholar 

  • Leskinen P, Kangas J (1998) Modelling and simulation of timber process for planning calculations. Scand J For Res 13:470–477

    Article  Google Scholar 

  • Liski J, Pussinen A, Pingoud K, Mäkipää R, Karjalainen T (2001) Which rotation length is favourable to carbon sequestration? Can J For Res 31:2004–2013. https://doi.org/10.1139/cjfr-31-11-2004

    Article  Google Scholar 

  • Liski J, Tuomi M, Rasinmäki J (2009) Yasso07 user-interface manual. Finnish Environment Institute (www.environment.fi/syke/yasso, 12 pp+Appendix)

  • Lukeš P, Rautiainen M, Manninen T, Stenberg P, Mõttus M (2014) Geographical gradients in boreal forest albedo and structure in Finland. Remote Sens Environ 152:526–535

    Article  Google Scholar 

  • Lüpke B, Spellmann H (1999) Aspects of stability, growth and natural regeneration in mixed Norway spruce-European beech stands as a basis of silviculture decisions. In: Olsthoorn AFM et al (eds) Management of mixed-species forests: silviculture and economics. Wageningen, IBN-DLO Scientific Contributions, pp 245–267

    Google Scholar 

  • Man R, Lieffers VJ (1999) Are mixtures of aspen and white spruce more productive than single species stands? For Chron 75(3):505–513

    Article  Google Scholar 

  • Mielikäinen K (1985) Effect of an admixture of birch on the structure and development of Norway spruce stands. Commun Inst For Fenn 133:1–79

    Google Scholar 

  • Miina J, Saksa T (2006) Predicting regeneration establishment in Norway spruce plantations using a multivariate multilevel model. New For 32:265–283

    Article  Google Scholar 

  • Möykkynen T, Pukkala T (2010) Optimizing the management of Norway spruce and Scots pine mixtures on a site infected by Heterobasidion coll. Scand J For Res 40:347–356

    Google Scholar 

  • Overbeck M, Schmidt M (2012) Modelling infestation risk of Norway spruce by Ips typographus (L.) in the Lower Saxon Harz Mountain (Germany). For Ecol Manag 266:115–125

    Article  Google Scholar 

  • Piri T, Korhonen K, Sairanen A (1990) Occurrence of Heterobasidion annosum in pure and mixed spruce stands in southern Finland. Scand J For Res 5:113–125

    Article  Google Scholar 

  • Pretzsch H, Schütze G (2009) Transgressive overyielding in mixed compared with pure stands of Norway spruce and European beech in Central Europe: evidence on stand level and explanation on individual tree level. Eur J For Res 128:183–204. https://doi.org/10.1007/s10342-008-0215-9

    Article  Google Scholar 

  • Pretzsch H, del Río M, Ammer C, Avdagic A, Barbeito I, Bielak K, Brazaitis G, Coll L, Dirnberger G, Drössler L, Fabrika M, Forrester DI, Godvod K, Heym M, Hurt V, Kurylyak V, Löf M, Lombardi F, Matović B, Mohren F, Motta R, den Ouden J, Pach M, Ponette Q, Schütze G, Schweig J, Skrzyszewski J, Sramek V, Sterba H, Stojanović D, Svoboda M, Vanhellemont M, Verheyen K, Wellhausen K, Zlatanov T, Bravo-Oviedo A (2015) Growth and yield of mixed versus pure stands of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) analysed along a productivity gradient through Europe. Eur J For Res 134:927–947. https://doi.org/10.1007/s10342-015-0900-4

    Article  Google Scholar 

  • Pukkala T (2015) Optimizing continuous cover management of boreal forest when timber prices and tree growth are stochastic. For Ecosyst 2(6):1–13

    Google Scholar 

  • Pukkala T (2017) Does management improve the carbon balance of forestry? Forestry 90(1):125–135. https://doi.org/10.1093/forestry/cpw043

    Article  Google Scholar 

  • Pukkala T, Kellomäki S (2012) Anticipatory vs. adaptive optimization of stand management when tree growth and timber prices are stochastic. Forestry 85(4):463–472

    Article  Google Scholar 

  • Pukkala T, Miina J (1997) A method for stochastic multi-objective optimization of stand management. For Ecol Manag 98:189–203

    Article  Google Scholar 

  • Pukkala T, Miina J (2005) Optimising the management of a heterogeneous stand. Silva Fenn 39(4):525–538

    Article  Google Scholar 

  • Pukkala T, Kellomäki S, Mustonen E (1988) Prediction of the amenity of a tree stand. Scand J For Res 3:533–544

    Article  Google Scholar 

  • Pukkala T, Vettenranta J, Kolström T, Miina J (1994) Productivity of a mixed Scots pine-Norway spruce stand. Scand J For Res 9:143–153

    Article  Google Scholar 

  • Pukkala T, Miina J, Kurttila M, Kolström T (1997) A spatial yield model for optimizing the thinning regime of mixed stand of Pinus sylvestris and Picea abies. Scand J For Res 13:31–42

    Article  Google Scholar 

  • Pukkala T, Lähde E, Laiho O (2009) Growth and yield models for uneven-sized forest stands in Finland. For Ecol Manag 258:207–216

    Article  Google Scholar 

  • Pukkala T, Lähde E, Laiho O (2013) Species interactions in the dynamics of even- and uneven-aged boreal forests. J Sustain For 32(4):371–403

    Article  Google Scholar 

  • Reeves LH, Haight RG (2000) Timber harvest scheduling with price uncertainty using Markowitz portfolio optimization. Ann Oper Res 95:229–250. https://doi.org/10.1023/A:1018974712925

    Article  Google Scholar 

  • Repola J (2006) Models for vertical wood density of Scots pine, Norway spruce and birch stems, and their application to determine average wood density. Silva Fenn 40(4):673–685

    Article  Google Scholar 

  • Repola J (2008) Biomass equations for birch in Finland. Silva Fenn 42(4):605–624

    Article  Google Scholar 

  • Repola J (2009) Biomass equations for Scots pine and Norway spruce in Finland. Silva Fenn 43(4):625–647

    Article  Google Scholar 

  • Reyer C, Bathgate S, Blennow K, Borges JG, Bugmann H, Delzon S, Faias SP, Garcia-Gonzalo J, Gardiner B, Gonzalez-Olabarria JR, Gracia C, Hernández JG, Kellomäki S, Kramer K, Lexer MJ, Marcus Lindner M, van der Maaten E, Maroschek M, Muys B, Nicoll B, Marc Palahi M, Palma JHN, Paulo JA, Peltola H, Pukkala T, Rammer W, Ray D, Sabaté S, Schelhaas M-J, Seidl R, Temperli C, Tomé M, Yousefpour R, Zimmermann NE, Hanewinkel M (2017) Are forest disturbances amplifying or cancelling out climate change-induced productivity changes in European forests? Environ Res Lett 12:1–12

    Article  Google Scholar 

  • Rummukainen A, Alanne H, Mikkonen E (1995) Wood procurement in the pressure of change—resource evaluation model till year 2010. Acta For Fenn 248:1–9

    Google Scholar 

  • Silvennoinen H, Alho J, Kolehmainen O, Pukkala T (2001) Prediction models of landscape preferences at the forest stand level. Landsc Urban Plan 56(1–2):11–20

    Article  Google Scholar 

  • Thompson I, Mackey B, McNulty S, Mosseler A (2009) Forest resilience, biodiversity, and climate change: a synthesis of the biodiversity/resilience/stability relationship in forest ecosystems. Convention of biological diversity, vol 43. The Secretariat of the Convention on Biological Diversity, Montreal, pp 1–67

    Google Scholar 

  • Thomson TA (1991) Efficient combinations of timber and financial market investments in single-period and multiperiod portfolios. For Sci 37:461–480

    Google Scholar 

  • Tikkanen O-P, Heinonen T, Kouki J, Matero J (2007) Habitat suitability models of saproxylic red-listed boreal forest species in long-term matrix management: cost-effective measures for multi-species conservation. Biol Conserv 140:359–372

    Article  Google Scholar 

  • Tuomi M, Laiho R, Repo A, Liski J (2011) Wood decomposition model for boreal forests. Ecol Model 222(3):709–718

    CAS  Article  Google Scholar 

  • Valkonen S, Valsta L (2001) Productivity and economics of mixed two-storied spruce and birch stands in Southern Finland simulated with empirical models. For Ecol Manag 140:133–149

    Article  Google Scholar 

  • Woodward S, Stenlid J, Karjalainen R, Hüttermann A (1998) Heterobasidion annosum. Biology, ecology, impact and control. CAB International, Wallingford, pp xi–xii

    Google Scholar 

  • Zubizarreta-Gerendiain A, Pukkala T, Peltola H (2017) Effects of wind damage on the optimal management of boreal forests under current and changing climatic conditions. Can J For Res 47:246–256. https://doi.org/10.1139/cjfr-2016-0226

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timo Pukkala.

Additional information

The online version is available at http://www.springerlink.com

Project Funding: None

Corresponding editor: Zhu Hong.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pukkala, T. Effect of species composition on ecosystem services in European boreal forest. J. For. Res. 29, 261–272 (2018). https://doi.org/10.1007/s11676-017-0576-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-017-0576-3

Keywords

  • Albedo
  • Boreal forest
  • Carbon sequestration
  • Diversity
  • Mixed forest
  • Resilience
  • Scenario analysis