Skip to main content
Log in

Land cover changes and fragmentation in mountain neotropical ecosystems of Oaxaca, Mexico under community forest management

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Changes in land cover have a direct impact on forest ecosystem goods and services. In this study, changes in land cover in Sierra de Juarez–Oaxaca ecosystems were estimated using a consistent processing of Landsat images and OBIA methodology. Additionally, landscape analyses using FRAGSTAT were conducted. In 2014, Sierra de Juarez–Oaxaca was covered by approximately 84% of forests, mainly pine-oak and cloud forests. After extensive deforestation until 2001, this trend was reversed and the forest cover surface area in 2014 was slightly higher than in 1979. The comparison of the landscape structure of the forested and agricultural lands suggests an increase in habitat heterogeneity. However, interspersion and juxtaposition indices, showing the patch shape by patch area and perimeter, were similar throughout the study period (1979–2014). Social and economic drivers can explain this situation: namely, community organization, forest enterprises, payment for ecosystem services programs, and changes of agricultural activity. Communities in the Sierra of Oaxaca have reforested degraded lands, created community forest enterprises, and preserved the forest under conservation schemes like those proposed by the Mexican payment for ecosystem services programs. However, their sustainable management faces internal challenges and has become highly dependent on political and institutional decisions beyond their control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Achard F, Eva H, Stibig H, Mayaux P, Gallego J, Richards T, Malingreau J (2002) Determination of deforestation rates of the world’s humid tropical forests. Science 297:999–1002

    Article  CAS  PubMed  Google Scholar 

  • Agarwal C, Green G, Grove J, Evans T, Schweik C (2002) A review and assessment of land-use change models: dynamics of space, time, and human choice. Center for the Study of Institutions Population, and Environmental Change Indiana University, Bloomington

    Google Scholar 

  • Aguilar-Vásquez Y, Aliphat Fernández M, Caso Barrera L, del Amo Rodríguez S, Sánchez Gómez M, Martínez-Carrera D (2014) Impact of traditionally managed forest units on the landscape connectivity of Sierra de Los Tuxtlas, Mexico. Rev Biol Trop 62(3):1099–1109

    Article  PubMed  Google Scholar 

  • Benítez-Malvido J, Arroyo-Rodríguez V (2008) Habitat fragmentation, edge effects and biological corridors in tropical ecosystems. In: Del Claro K, Oliveira O, Rico-Gray V, Ramirez A, Almeida A, Bonet A, Scarano F, Consoli F, Morales F, Naoki J, Costello J, Sampaio M, Quesada M, Morris M, Palacios M, Ramirez N, Marcal O, Ferraz R, Marquis R, Parentoni R, Rodriguez R, Luttge U (eds) Encyclopedia of Life Support Systems (EOLSS). International Commission on Tropical Biology and Natural Resources. UNESCO, Eolss Publishers, Oxford

    Google Scholar 

  • Bennett A, Saunders D (2010) Habitat fragmentation and landscape change. Conserv Biol 93:1544–1550

    Google Scholar 

  • Beuchle R, Grecchi R, Shimabukuro Y, Seliger R, Eva H, Sano E, Achard F (2015) Land cover changes in the Brazilian Cerrado and Caatinga biomes from 1990 to 2010 based on a systematic remote sensing sampling approach. Appl Geogr 58:116–127

    Article  Google Scholar 

  • Blaschke T (2010) Object based image analysis for remote sensing. ISPRS J Photogramm 65(1):2–16

    Article  Google Scholar 

  • Boege E (2008) El patrimonio biocultural de los pueblos indígenas de Mexico: hacia la conservación in situ de la biodiversidad y agrobiodiversidad en los territorios indígenas. INAH, Mexico

    Google Scholar 

  • Boucher D, Elias P, Lininger K, May-Tobin C, Roquemore S, Saxon E (2011) The root of the problem: what’s driving tropical deforestation today?. Union of Concerned Scientists, Cambridge

    Google Scholar 

  • Bray D, Merino-Perez L, Negreros-Castillo P, Segura-Warnholtz G, Torres-Rojo J, Vester H (2003) Mexico’s community-managed forests as a global model for sustainable landscapes. Conserv Biol 17:672–677

    Article  Google Scholar 

  • Cairns M, Haggerty P, Alvarez R, de Jong B, Olmsted I (2000) Tropical Mexico’s recent land-use change: a region’s contribution to the global carbon cycle. Ecol Appl 10:1426–1441

    Article  Google Scholar 

  • Caselles V, López Garcia M (1989) An alternative simple approach to estimate atmospheric correction in multitemporal studies. Int J Remote Sens 10:1127–1134

    Article  Google Scholar 

  • Challenger A, Dirzo R, López JC, Mendoza E, Lira-Noriega A, Cruz I (2009) Factores de cambio y estado de la biodiversidad. Cap Nat México 2:37–73

    Google Scholar 

  • Chander G, Markham B, Helder D (2009) Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+ , and EO-1 ALI sensors. Remote Sens Environ 113(5):893–903

    Article  Google Scholar 

  • Chapela F (1999) Emergencia de las organizaciones sociales de Oaxaca: la lucha por los recursos forestales. Alteridades 9(17):105–112

    Google Scholar 

  • Chipman J, Olmanson L, Gitelson A (2009) Remote Sensing Methods for Lake Management: a guide for resource managers and decision-makers. North American Lake Management Society-Dartmouth College, University of Minnesota, and University of Nebraska. United States Environmental Protection Agency, Madison

    Google Scholar 

  • CONABIO (2009) Mexican Biodiversity. http://www.biodiversidad.gob.mx/v_ingles/country/pdf/naturalWealth.pdf. Accessed Feb 2014)

  • CONAFOR (2012) La Comisión Nacional Forestal en la historia y el futuro de la política forestal de Mexico. Centro de Investigación y Docencia Económicas-Comisión Nacional Forestal, Mexico

    Google Scholar 

  • Dávila P, Torres L, Torres R, Herrera-MacBryde O (1997) Sierra de Juárez, Oaxaca, Mexico. In: Davis S, Heywood V, Herrera-MacBryde O, Villa-Lobos J, Hamilton A (eds) Centres of plant diversity: a guide and strategy for their conservation. The Americas. IUCN Publications Unit, Cambridge, pp 135–138

    Google Scholar 

  • Deikumah J, Mcalpine C, Maron M (2014) Biogeographical and taxonomic biases in tropical forest fragmentation research. Conserv Biol 28(6):1522–1531

    Article  PubMed  Google Scholar 

  • Delgado-Serrano M, Escalante M, Basurto S (2015) Is the community-based management of natural resources inherently linked to resilience? An analysis of the Santiago Comaltepec community (Mexico). J Depop Rur Develop 18:91–114

    Google Scholar 

  • Ellis E, Porter-Bolland L (2008) Is community-based forest management more effective than protected areas? A comparison of land use/land cover change in two neighboring study areas of the Central Yucatan Peninsula, Mexico. For Ecol Manag 256(11):1971–1983

    Article  Google Scholar 

  • Escalante R, Basurto S, Cruz-Bayer A, Moreno E, Chapela F, Hernández I, Lara Y (2013) Stakeholder vision on problems and drivers related to environmental challenges in Mexico case study. COMET-LA Working Paper. http://www.comet-la.eu/index.php/en/publications.html

  • ESRI (2006) ArcGIS 9.2. Environmental Systems Research Inst. ESRI, Redlands

    Google Scholar 

  • Evans T, Costa M (2013) Landcover classification of the Lower Nhecolândia subregion of the Brazilian Pantanal Wetlands using ALOS/PALSAR, RADARSAT-2 and ENVISAT/ASAR imagery. Remote Sens Environ 128:118–137

    Article  Google Scholar 

  • FAO (2014) State of the World’s Forests. Enhancing the socioeconomic benefits from forests. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Ferrier S, Drielsma M (2010) Synthesis of pattern and process in biodiversity conservation assessment: a flexible whole—landscape modelling framework. Divers Distrib 16(3):386–402

    Article  Google Scholar 

  • Fischer J, Lindenmayer D, Manning A (2006) Biodiversity, ecosystem function, and resilience: ten guiding principles for commodity production landscapes. Front Ecol 4(2):80–86

    Article  Google Scholar 

  • Franklin A, Noon B, George T (2002) What is habitat fragmentation? Stud Avian Biol 25:20–29

    Google Scholar 

  • Gómez-Mendoza L, Vega-Peña E, Isabel Ramírez M, Palacio-Prieto J, Galicia L (2006) Projecting land-use change processes in the Sierra Norte of Oaxaca, Mexico. Appl Geogr 26:276–290

    Article  Google Scholar 

  • Gómez-Pompa A, Kaus A (1999) From pre-Hispanic to future conservation alternatives: lessons from Mexico. P Natl Acad Sci 96(11):5982–5986

    Article  Google Scholar 

  • González Ríos A (2011) Oaxaca 2011: Un Diagnóstico Breve. Grupo Mesófilo, A.C., Oaxaca

    Google Scholar 

  • González-Espinosa M, Meave J, Ramírez-Marcial N, Toledo-Aceves T, Lorea-Hernández F, Ibarra-Manríquez G (2012) Los bosques de niebla de Mexico: conservación y restauración de su componente arbóreo. Ecosistemas 21(1–2):36–52

    Google Scholar 

  • Goodwin B, Fahrig L (2002) How does landscape structure influence landscape connectivity? Oikos 99:552–570

    Article  Google Scholar 

  • Green A, Berman M, Switzer P, Craig M (1988) A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE T Geosci Remote 26(1):65–74

    Article  Google Scholar 

  • Hansen M, Potapov P, Moore R, Hancher M, Turubanova S, Tyukavina A, Kommareddy A (2013) High-resolution global maps of 21st-century forest cover change. Science 342(6160):850–853

    Article  CAS  PubMed  Google Scholar 

  • Hudgens B, Haddad N (2003) Predicting which species will benefit from corridors in fragmented landscapes from population growth models. Am Nat 161(5):808–820

    Article  PubMed  Google Scholar 

  • Jenness J, Wynne J (2006) Kappa analysis extension for ArcView 3.x. (version 2.1). Jenness Enterprises, Flagstaff

    Google Scholar 

  • Jomaa I, Audab Y, Abi Salehc B, Hamze M, Safi S (2008) Landscape spatial dynamics over 38 years under natural and anthropogenic pressures in Mount Lebanon. Landsc Urban Plan 87(1):67–75

    Article  Google Scholar 

  • Kissinger G, Herold M, De Sy V (2012) Drivers of deforestation and forest degradation: A synthesis report for REDD+ policymakers. Lexeme Consulting, Vancouver

    Google Scholar 

  • Klepeis P, Vance C (2003) Neoliberal policy and deforestation in southeastern Mexico: an assessment of the PROCAMPO program. Econ Geogr 79(3):221–240

    Article  Google Scholar 

  • Klooster D, Masera O (2000) Community forest management in Mexico: carbon mitigation and biodiversity conservation through rural development. Glob Environ Change 10:259–272

    Article  Google Scholar 

  • Laliberté E, Legendre P (2010) A distance—based framework for measuring functional diversity from multiple traits. Ecology 91(1):299–305

    Article  PubMed  Google Scholar 

  • Li XX, Shao GF (2013) Object-based urban vegetation mapping with high-resolution aerial photography as a single data source. Int J Remote Sens 34(3):771–789

    Article  CAS  Google Scholar 

  • Lillesand T, Kiefer R, Chipman J (2014) Remote sensing and image interpretation. Wiley, New York

    Google Scholar 

  • Lu DS, Mausel P, Brondızio E, Moran E (2004) Relationships between forest stand parameters and Landsat TM spectral responses in the Brazilian Amazon Basin. For Ecol Manag 198(1):149–167

    Article  Google Scholar 

  • Mas J, Velázquez A, Díaz-Gallegos J, Mayorga-Saucedo R, Alcantara A, Bocco G, Castro R, Fernández T, Pérez-Vega A (2004) Assessing land use/cover changes: a nationalwide multidate spatial database for Mexico. Int J Appl Earth Obs 5:249–261

    Article  Google Scholar 

  • Masera O, Ordóñez M, Dirzo R (1997) Carbon emissions from Mexican forests: current situation and long-term scenarios. Clim Change 35(3):265–295

    Article  CAS  Google Scholar 

  • Matsushita B, Xu M, Fukushima T (2005) Characterizing the changes in landscape structure in the Lake Kasumigaura Basin, Japan using a high-quality GIS dataset. Landsc Urban Plan 78(3):241–250

    Article  Google Scholar 

  • Mayfield MM, Bonser SP, Morgan JW, Aubin I, McNamara S, Vesk PA (2010) What does species richness tell us about functional trait diversity? Predictions and evidence for responses of species and functional trait diversity to land-use change. Global Ecol Biogeogr 19:423–431

    Google Scholar 

  • McGarigal K, Cushman SA (2002) Comparative evaluation of experimental approaches to the study of habitat fragmentation effects. Ecol Appl 12(2):335–345

    Article  Google Scholar 

  • McGarigal K, Marks B (1995) FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. USDA Forest Service General Technical Report PNW-351. Corvallis, Oregon, U.S.A

  • Merino L, Martínez A (2014) A vuelo de pájaro: las condiciones de las comunidades con bosques templados en México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, CONABIO

    Google Scholar 

  • Mitri G, Gitas I (2013) Mapping post-fire forest regeneration and vegetation recovery using a combination of very high spatial resolution and hyperspectral satellite imagery. Int J Appl Earth Obs 20:60–66

    Article  Google Scholar 

  • Ochoa-Gaona S, González-Espinosa M, Meave JA, Sorani V (2004) Effect of forest fragmentation on the woody flora of the highlands of Chiapas, Mexico. Biodivers Conserv 13(5):867–884

    Article  Google Scholar 

  • Olivera G (2005) La reforma al artículo 27 Constitucional y la incorporación de las tierras ejidales al mercado legal de suelo urbano en Mexico. Scr Nova 9(194):1–33

    Google Scholar 

  • Olson D, Dinerstein E, Wikramanayake E, Burgess N, Powell G, Underwood E, Loucks C (2001) Terrestrial Ecoregions of the World: a New Map of Life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51(11):933–938

    Article  Google Scholar 

  • Porter-Bolland L, Ellis EA, Guariguata MR, Ruiz-Mallén I, Negrete-Yankelevich S, Reyes-García V (2012) Community managed forests and forest protected areas: an assessment of their conservation effectiveness across the tropics. Forest Ecol Manag 268:6–17

    Article  Google Scholar 

  • Raši R, Bodart C, Stibig H, Eva H, Beuchle R, Carboni S, Simonetti D, Achard F (2011) An automated approach for segmenting and classifying a large sample of multi-date Landsat imagery for pan-tropical forest monitoring. Remote Sens Environ 115:3659–3669

    Article  Google Scholar 

  • Reyes-García V, Marti N, McDade T, Tanner S, Vadez V (2007) Concepts and methods in studies measuring individual ethnobotanical knowledge. J Ethnobiol 27(2):182–203

    Article  Google Scholar 

  • Rudel T, Roper J (1997) The paths to rain forest destruction: crossnational patterns of tropical deforestation, 1975–1990. World Dev 25(1):53–65

    Article  Google Scholar 

  • Sarukhán J, Urquiza-Haas T, Koleff P, Carabias J, Dirzo R, Ezcurra E, Cerdeira-Estrada S, Soberón J (2015) Strategic actions to value, conserve, and restore the natural capital of megadiversity countries: the case of Mexico. Bioscience 65:164–173

    Article  PubMed  Google Scholar 

  • Saunders D, Hobbs R, Margules C (1991) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5:18–32

    Article  Google Scholar 

  • Sebbenn A, Carvalho A, Freitas M, Moraes S, Gaino A, Da Silva J, Moraes M (2011) Low levels of realized seed and pollen gene flow and strong spatial genetic structure in a small, isolated and fragmented population of the tropical tree Copaifera langsdorffii Desf. Heredity 106(1):134–145

    Article  CAS  PubMed  Google Scholar 

  • Song C, Woodcock C, Seto K, Lenney M, Macomber S (2001) Classification and change detection using Landsat TM data: when and how to correct atmospheric effects? Remote Sens Environ 75(2):230–244

    Article  Google Scholar 

  • Strahler A, Boschetti L, Foody G, Fiedl M, Hansen M, Herold M, Mayaux P, Morisette J, Stehman S, Woodcock C (2006) Global land cover validation: recommendations for evaluation and accuracy assessment of global land cover maps. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  • Toure S, Stow D, Shih HC, Coulter L, Weeks J, Engstrom R, Sandborn A (2016) An object-based temporal inversion approach to urban land use change analysis. Remote Sens Lett 7(5):503–512

    Article  Google Scholar 

  • Trejo I, Dirzo R (2000) Deforestation of seasonally dry tropical forest: a national and local analysis in Mexico. Biol Conserv 94(2):133–142

    Article  Google Scholar 

  • Turner MG, Gardner RH, O’Neill RV (2001) Landscape ecology: theory and practice. Springer, New York, p 482

    Google Scholar 

  • Velázquez A, Durán E, Ramírez I, Mas J, Bocco G, Ramírez G, Palacio J (2003) Land use-cover change processes in highly biodiverse areas: the case of Oaxaca, Mexico. Glob Environ Change 13:175–184

    Article  Google Scholar 

  • Vetter D, Hansbauer M, Végvári Z, Storch I (2011) Predictors of forest fragmentation sensitivity in Neotropical vertebrates: a quantitative review. Ecography 34(1):1–8

    Article  Google Scholar 

  • Vidal O, López-García J, Rendón-Salinas E (2014) Trends in deforestation and forest degradation after a decade of monitoring in the Monarch Butterfly Biosphere Reserve in Mexico. Conserv Biol 28:177–186

    Article  PubMed  PubMed Central  Google Scholar 

  • Villaseñor J (2010) El bosque húmedo de montaña en Mexico y sus plantas vasculares: catálogo florístico-taxonómico. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad—Universidad Nacional Autónoma de Mexico, Mexico

  • WRI (2011) Climate Analysis Indicators Tool (CAIT) version 8.0. URL: http://cait.wri.org/. Accessed Feb 2011)

  • WWF (2007) Ecorregiones prioritarias. Sierra Norte de Oaxaca. World Wildlife Fund, Mexico DF

    Google Scholar 

  • Yang XJ, Lo CP (2011) Using a time series of satellite imagery to detect land use and land cover changes in the Atlanta, Georgia metropolitan area. Int J Remote Sens 23(9):1775–1798

    Article  Google Scholar 

Download references

Acknowledgements

The authors would also like to thank the Comunidad de Oaxaca, for field data and cartographic support, and The National Land Centre of Mexico and the survey department of CONABIO for providing aerial photographs and topographic sheets. Rafael M. Navarro-Cerrillo acknowledges the financial support of the University of Cordoba-Campus de Excelencia CEIA3. MMDS acknowledges the support in the research tasks of the Jean Monnet Networks Project No. 564651-EPP-1-2015-1-SK- EPPJMO-NETWORK “Sustainable Land Management Network”. Additionally, we thank all the community leaders and farmers in Oaxaca for their collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Mª Navarro Cerrillo.

Additional information

Project funding: The work was supported by the COMET-LA project (FP7-Environment-ENV.2011.4.2.3-1-282845) of the European Community.

The online version is available at http://www.springerlink.com

Corresponding editor: Tao Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navarro Cerrillo, R.M., Esteves Vieira, D.J., Ochoa-Gaona, S. et al. Land cover changes and fragmentation in mountain neotropical ecosystems of Oaxaca, Mexico under community forest management. J. For. Res. 30, 143–155 (2019). https://doi.org/10.1007/s11676-017-0568-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-017-0568-3

Keywords

Navigation