Skip to main content
Log in

Definition of fine roots on the basis of the root anatomy, diameter, and branch orders of one-year old Fraxinus mandshurica seedlings

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Fine roots are important in root absorption of nutrient and water, and in root turnover. Accurate definition of fine roots is a prerequisite to improved estimation of the physiological and ecological functions of forest ecosystems. Root development and physiological functions are reflections of root anatomical structure. In this study, the anatomical structures of different root orders were analyzed by examining paraffin sections of one-year old Fraxinus mandshurica seedlings. One-year-old F. mandshurica seedlings had over five root orders. The root anatomical structures of all orders showed more differences. First and second order roots consisted of four sections: the epidermis, cortex, pericycle, and vascular bundles. Fourth and fifth order roots were mainly composed of the skin and peripheral vascular bundles (including the xylem and phloem). Third order roots had root epidermal and cortical structures, but the quantity and integrity of the cortical cells were inferior to those of the first and second order roots, and superior to those of the fourth and fifth order roots. All the first and second order roots and some third order roots with discontinuous cork layer (< 0.4 mm in diameter), but not the fourth and fifth order roots, were the fine roots of one-year old F. mandshurica seedlings. Although they had similar diameters, different portions of root systems had different anatomical structures and therefore, vary in capacity to absorb water and nutrients. Fine roots were accurately defined by root diameter, branch orders, and anatomical structural features of one-year old F. mandshurica seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aber JD, Melillo JM, Nadelhoffer KJ, Mcclaugherty CA, Pastor J (1985) Fine root turnover in forest ecosystems in relation to quality and form of nitrogen availability: a comparison of two methods. Oecologia 66:317–321

    Article  PubMed  Google Scholar 

  • Donnelly L, Jagodziński AM, Grant OM, O’Reilly C (2016) Above- and below-ground biomass partitioning and fine root morphology in juvenile Sitka spruce clones in monoclonal and polyclonal mixtures. For Ecol Manage 373:17–25

    Article  Google Scholar 

  • Eissenstat DM, Achor DS (1999) Anatomical characteristics of roots of citrus rootstocks that vary in specific root length. New Phytol 141:309–321

    Article  Google Scholar 

  • Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL (2000) Building roots in a changing environment: implications for root longevity. New Phytol 147:33–42

    Article  CAS  Google Scholar 

  • Fahey TJ, Hughes JW (1994) Fine root dynamics in a northern hardwood forest ecosystem, Hubbard Brook Experimental Forest, NH. J Ecol 82:533–548

    Article  Google Scholar 

  • Fitter AH (1985) Functional significance of root morphology and root system architecture. In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecological interaction in soil. Blackwell Scientific Publication, Oxford, pp 87–106

    Google Scholar 

  • Gordon WS, Ackson RB (2000) Nutrient concentrations in fine roots. Ecology 81:275–280

    Article  Google Scholar 

  • Gu JC, Yang Xu, Dong XY, Wang HF, Wang ZQ (2014) Root diameter variations explained by anatomy and phylogeny of 50 tropical and temperate tree species. Tree Physiol 34:415–425

    Article  PubMed  Google Scholar 

  • Gu JC, Wei X, Wang J, Wang Z (2015) Marked differences in standing biomass, length density, anatomy and physiological activity between white and brown roots in Fraxinus mandshurica Rupr. plantation. Plant Soil 392(1–2):267–277

    Article  CAS  Google Scholar 

  • Guo DL, Xia M, Wei X, Chang W, Liu Y, Wang Z (2008) Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytol 180:673–683

    Article  PubMed  Google Scholar 

  • Hendrick RL, Pregitzer KS (1993) Thedynamics of fine root length, biomass and nitrogen content in two northern hardwoods ecosystems. Can J For Res 23:2507–2520

    Article  Google Scholar 

  • Hishi T (2007) Heterogeneity of individual roots within the fine root architecture: causal links between physiological and ecosystem functions. J For Res 12:126–133

    Article  Google Scholar 

  • Hishi T, Takeda H (2005) Life cycles of individual roots in fine root system of Chamaecyparis obtusa. J For Res 10:181–187

    Article  Google Scholar 

  • Jagodziński AM, Kałucka I (2010) Fine roots biomass and morphology in a chronosequence of young Pinus sylvestris stands growing on a reclaimed lignite mine spoil heap. Dendrobiology 64:19–30

    Google Scholar 

  • Jagodziński AM, Kałucka I (2011) Fine root biomass and morphology in an age-sequence of post-agricultural Pinus sylvestris L. stands. Dendrobiology 66:71–84

    Google Scholar 

  • Jagodzinski AM, Ziółkowski J, Warnkowska A, Prais H (2016) Tree age effects on fine root biomass and morphology over chronosequences of Fagussylvatica, Quercusrobur and Alnusglutinosa stands. PLoS ONE 11(2):e0148668. https://doi.org/10.1371/journal.pone.0148668.1-25

    Article  PubMed  PubMed Central  Google Scholar 

  • Joslin JD, Henderson GS (1987) Organic matter and nutrients associated with fine root turnover in a white oak stand. For Sci 33:330–346

    Google Scholar 

  • King JS, Albaugh TJ, Allen HL, Buford M, Strain BR, Dougherry P (2002) Belowground carbon input to soil is controlled by nutrient availability and fine root dynamics in loblolly pine. New Phytol 154:389–398

    Article  Google Scholar 

  • Macfall JS, Johnson GA, Kramer PJ (1991) Comparative water uptake by roots of different ages in seedlings of loblolly pine (Pinus taedaL). New Phytol 119:551–560

    Article  Google Scholar 

  • Majdi H (2001) Changes in fine root production and longevity in relation to water and nutrient availability in a Norway spruce stand in northern Sweden. Tree Physiol 21:1057–1061

    Article  PubMed  CAS  Google Scholar 

  • McCormak ML, Dickie IA, Eissenstat DM et al (2015) Redefining fine root improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytol 207:505–518

    Article  Google Scholar 

  • McCrady RL, Comerford NB (1998) Morphological and anatomical relationships of loblolly pine fine roots. Trees 12:431–437

    Article  Google Scholar 

  • Mckenzie EB, Peterson CA (1995) Root browning in Pinus banksiana Lamb. And Eucalyptus pilularis Sm. 2. Anatomy and permeability of the cork zone. BotanicaActa 108:138–143

    CAS  Google Scholar 

  • Nadelhoffer KJ, Aber JD, Melillo JM (1985) Fine roots, net primary production, and soil nitrogen availability: a new hypothesis. Ecology 63:1481–1490

    Google Scholar 

  • Norby RJ, Jackson RB (2000) Root dynamics and global change: seeking an ecosystem perspective. New Phytol 147:3–12

    Article  CAS  Google Scholar 

  • Peterson CA, Enstone DE (1997) Functions of passage cells in the endodermis and exodermis of roots. Physiol Plant 97:592–598

    Article  Google Scholar 

  • Peterson CA, Enstone DE, Taylor JH (1999) Pine root structure and its potential significance for root function. Plant Soil 217:205–213

    Article  Google Scholar 

  • Pregitzer KS, Laskowski MJ, Burton AJ (1998) Variation in sugar maple root respiration with root diameter and soil depth. Tree Physiol 18:665–670

    Article  PubMed  Google Scholar 

  • Pregitzer KS, Deforest JL, Burton AJ, Allen MF, Ruess RW (2002) Fine root architecture of nine North American trees. Ecol Monogr 72:293–309

    Article  Google Scholar 

  • Ruess RW, Hendrick RL, Burton AJ, Pregitzer KS, Sveinbjornesson B, Allen MF, Maurer GE (2003) Coupling fine root dynamics with ecosystem carbon cycling in black spruce forests of interior Alaska. Ecol Monogr 73:643–662

    Article  Google Scholar 

  • Steudle E, Peterson CA (1998) How does water get through roots? J Exp Bot 49:775–788

    CAS  Google Scholar 

  • Taylor JH, Peterson PA (2000) Morphometric analysis of Pinus banksiana Lamb. Root anatomy during a 3-month field study. Trees-Struct Funct 14:239–247

    Article  Google Scholar 

  • Tierney GL, Fahey TJ (2002) Fine root turnover in a northern hardwood forest: a direct comparison of the radiocarbon and minirhizotr on methods. Can J For Res 32:1692–1697

    Article  Google Scholar 

  • Valenzuela-Estrada LR, Vera-Caraballo V, Ruth LE, Eissenstat DM (2008) Root anatomy, morphology, and longevity among root orders in Vaccinium corymbosum (Ericaceae). Am J Bot 95:1506–1514

    Article  PubMed  Google Scholar 

  • Vogt KA, Persson H (1991) Measuring growth and development of roots. In: Lassoie JP, Hinckle TM (eds) Techniques and approaches in forest tree ecophysiology. CRC Press, Boston, pp 477–501

    Google Scholar 

  • Wang XR, Wang ZQ, Han YZ, Gu JC, Guo DL, Mei L (2005) Variation of fine root diameter with root order in Manchurian ash and Dahurian larch plantation. Acta Phytophysiologica Sinica 29:871–877

    Google Scholar 

  • Wells CE, Eissenstat DM (2001) Marked differences in survivorship among apple roots of different diameters. Ecology 82:882–893

    Article  Google Scholar 

  • Wells CE, Eissenstat DM (2003) Beyond the roots of young seedlings: the influence of age and order on fine root physiology. J Plant Growth Regula 21:324–334

    Article  CAS  Google Scholar 

  • Zhang XQ, Wu KH (2001) Fine root production and turnover for forestry ecosystem. Science Silv Sin 37:126–138

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Jiachun Gu, Hailong Sun, and Lin Lü for assistance in the field and laboratory studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Wei.

Additional information

Project Funding: This study was supported by National Key Research and Development Program of China (2017YFD0600605).

The online version is available at http://www.springerlink.com

Corresponding editor: Zhu Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, X., Wei, X. Definition of fine roots on the basis of the root anatomy, diameter, and branch orders of one-year old Fraxinus mandshurica seedlings. J. For. Res. 29, 1321–1327 (2018). https://doi.org/10.1007/s11676-017-0561-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-017-0561-x

Keywords

Navigation