Advertisement

Journal of Forestry Research

, Volume 29, Issue 5, pp 1195–1204 | Cite as

Mixed-effects modeling for tree height prediction models of Oriental beech in the Hyrcanian forests

  • Siavash KalbiEmail author
  • Asghar Fallah
  • Pete Bettinger
  • Shaban Shataee
  • Rassoul Yousefpour
Original Paper

Abstract

Height–diameter relationships are essential elements of forest assessment and modeling efforts. In this work, two linear and eighteen nonlinear height–diameter equations were evaluated to find a local model for Oriental beech (Fagus orientalis Lipsky) in the Hyrcanian Forest in Iran. The predictive performance of these models was first assessed by different evaluation criteria: adjusted R2 (R adj 2 ), root mean square error (RMSE), relative RMSE (%RMSE), bias, and relative bias (%bias) criteria. The best model was selected for use as the base mixed-effects model. Random parameters for test plots were estimated with different tree selection options. Results show that the Chapman–Richards model had better predictive ability in terms of adj R2 (0.81), RMSE (3.7 m), %RMSE (12.9), bias (0.8), %Bias (2.79) than the other models. Furthermore, the calibration response, based on a selection of four trees from the sample plots, resulted in a reduction percentage for bias and RMSE of about 1.6–2.7%. Our results indicate that the calibrated model produced the most accurate results.

Keywords

Random effects Tree height Calibration Sangdeh forest Chapman–Richards model Oriental beech 

References

  1. Adame P, del Río M, Cañellas I (2008) A mixed nonlinear height–diameter model for pyrenean oak (Quercus pyrenaica Willd.). For Ecol Manag 256:88–98CrossRefGoogle Scholar
  2. Ahmadi K, Alavi SJ, Kouchaksaraei MT, Aertsen W (2013) Non-linear height-diameter models for oriental beech (Fagus orientalis Lipsky) in the Hyrcanian Forests, Iran. Biotechnol Agric Soc Environ 17(3):431–440Google Scholar
  3. Amaro A, Reed D, Tomé M, Themido I (1998) Modelling dominant height growth: eucalyptus plantations in Portugal. For Sci 44(1):37–46Google Scholar
  4. Arcangeli C, Klopf M, Hale SE, Jenkins TAR, Hasenauer H (2014) The uniform height curve method for height–diameter modelling: an application to Sitka spruce in Britain. Forestry 87:177–186CrossRefGoogle Scholar
  5. Beal SL, Sheiner LB (1982) Estimating population kinetics. Crit Rev Biomed Eng 8:195–222PubMedGoogle Scholar
  6. Calama R, Montero G (2004) Interregional nonlinear height–diameter model with random coefficients for stone pine in Spain. Can J For Res 34:150–163CrossRefGoogle Scholar
  7. Castedo Dorado F, Barrio Anta M, Parresol BR, Álvarez González JG (2005) A stochastic height–diameter model for maritime pine ecoregions in Galicia (northwestern Spain). Ann For Sci 62:455–465CrossRefGoogle Scholar
  8. Corral-Rivas S, Álvarez-González JG, Crecente-Campo F, Corral-Rivas JJ (2014) Local and generalized height-diameter models with random parameters for mixed, uneven-aged forests in Northwestern Durango, Mexico. For Ecosyst 1:6CrossRefGoogle Scholar
  9. Curtis RO (1967) Height–diameter and height–diameter–age equations for second-growth Douglas-fir. For Sci 13(4):365–375Google Scholar
  10. Gregoire TG (1987) Generalized error structure for forestry yield models. For Sci 33:423–444Google Scholar
  11. Hall DB, Bailey RL (2001) Modeling and prediction of forest growth variables based on multilevel nonlinear mixed models. For Sci 47:311–321Google Scholar
  12. Huang S (1997) Development of compatible height and site index models for youngand mature stands within an ecosystem-based management framework. In: Amaro A, Tomé M (eds) Empirical and process-bsed models for forest tree and stand growth simulation. Edições Salamandra, Lisbon, pp 61–98Google Scholar
  13. Huang S, Titus SJ, Wiens DP (1992) Comparison of nonlinear height-diameter functions for major Alberta tree species. Can J For Res 22:1297–1304CrossRefGoogle Scholar
  14. Jayaraman K, Lappi J (2001) Estimation of height–diameter curves through multilevel models with special reference to even-aged teak stands. For Eco Manag 142:155–162CrossRefGoogle Scholar
  15. Krisnawati H, Wang Y, Ades PK (2010) Generalized height-diameter models for Acacia mangium Wild plantations in south Sumatra. J For Res 7(1):1–19Google Scholar
  16. Krumland BE, Wensel LC (1988) A generalized height–diameter equation for coastal California species. West J App For 3:113–115Google Scholar
  17. Lappi J, Bailey RL (1988) A height prediction model with random stand and tree parameters: an alternative to traditional site index methods. For Sci 34:907–927Google Scholar
  18. Lei YC, Zhang SY (2004) Features and partial derivatives of Bertalanffy-Richards growth model in forestry. Nonlinear Anal Model Control 9(1):65–73Google Scholar
  19. Lindstrom MJ, Bates DM (1990) Nonlinear mixed effects for repeated measures data. Bio 46:673–687Google Scholar
  20. Littell RC, Milliken GA, Stroup WW, Wolfinger RD (1996) SAS system for mixed models. SAS Institute Inc., CaryGoogle Scholar
  21. Lundqvist B (1957) On the height growth in cultivated stands of pine and spruce in Northern Sweden. Meddelanden Fran Statens Skogforsk 47:1–64Google Scholar
  22. Meyer HA (1940) A mathematical expression for height curves. J For 38:415–420Google Scholar
  23. Michaelis L, Menten ML (1913) Die kinetik der invertinwirkung. Biochem Z 49:333–369Google Scholar
  24. Michailoff I (1943) Zahlenmässiges verfahren für die ausführung der bestandeshöhenkurven forstw. Forstwissenschaftliches Centralblatt und Tharandter Forstliches Jahrbuch 6:273–279Google Scholar
  25. Näslund M (1936) Skogsförsöksanstaltens gallringsförsök i tallskog. Meddelanden från Statens Skogsförsöksanstalt 29:1–169.Google Scholar
  26. Neter J, Wasserman W, Kutner MH (1990) Applied linear regression models. Richard D, IrwinGoogle Scholar
  27. Pearl R, Reed LJ (1920) On the rate of growth of the population of the united states since 1790 and its mathematical representation. Proc Natl Acad Sci 6:275–288CrossRefPubMedGoogle Scholar
  28. Peng C, Zhang L, Huang S, Zhou X, Parton J, Woods M (2001) Developing ecoregion-based height–diameter models for jack pine and black spruce in Ontario. Ontario Ministry of Natural Resources, Ontario Forest Research Institute, Sault Ste. Marie, Ontario. For Res Report No. 159, p 10Google Scholar
  29. Peschel W (1938) Mathematical methods for growth studies of trees and forest stands and the results of their application. Tharandter Forstliches Jahrbirch 89:169–247Google Scholar
  30. Pretzsch H (2009) Forest dynamics, growth and yield: from measurement to model. Springer, BerlinCrossRefGoogle Scholar
  31. Ratkowsky DA (1990) Handbook of nonlinear regression. Marcel Deccer Inc., New YorkGoogle Scholar
  32. Richards FJ (1959) A flexible growth function for empirical use. J Exp Bot 10(2):290–300CrossRefGoogle Scholar
  33. Sagheb-Talebi K, Yazdian F, Sajedi T (2004) Forests of Iran. Institute of Forests and Rangelands (RIFR), TehranGoogle Scholar
  34. Schmidt M, Hanewinkel M, Kändler G, Kublin E, Kohnle U (2010) An inventory-based approach for modeling single tree storm damage—experiences with the winter storm of 1999 in southwestern Germany. Can J For Res 40:1636–1652CrossRefGoogle Scholar
  35. Schumacher FX (1939) A new growth curve and its application to timber yield studies. J For 37:819–820Google Scholar
  36. Sharma RP (2009) Modeling height-diameter relationships for Chir pine trees. Banko Janakari 19(2):3–9CrossRefGoogle Scholar
  37. Sibbesen E (1981) Some new equations to describe phosphate sorption by soils. J Soil Sci 32:67–74CrossRefGoogle Scholar
  38. Soares P, Tomé M (2002) Height–diameter equation for first rotation eucalypt plantations in Portugal. For Eco Manag 166:99–109CrossRefGoogle Scholar
  39. Stoffels A, van Soest J (1953) The main problems in sample plots. Ned Boschb Tijdschr 25:190–199Google Scholar
  40. Strand L (1959) The accuracy of some methods for estimating volume and increment on sample plots. Medd. Norske Skogfors. 15(4):284–392 (in Norwegian with English summary) Google Scholar
  41. Temesgen H, Gadow KV (2004) Generalized height–diameter models—an application for major tree species in complex stands of interior British Columbia. Eur J For Res 123:45–51CrossRefGoogle Scholar
  42. Trincado G, Vanderschaaf CL, Burkhart HE (2007) Regional mixed-effects height–diameter models for loblolly pine (Pinus taeda L.) plantations. Eur J For Res 126:253–262CrossRefGoogle Scholar
  43. van Laar A, Akça A (2007) Forest mensuration. Springer, DordrechtCrossRefGoogle Scholar
  44. Vanclay JK (1994) Modelling forest growth and yield—application to mixed tropical forests. CAB International, WallingfordGoogle Scholar
  45. Vonesh EF, Chinchilli VM (1997) Linear and nonlinear models for the analysis of repeated measurements. Marcel Dekker Inc, New YorkGoogle Scholar
  46. West PW, Ratkowsky DA, Davis AW (1984) Problems of hypothesis testing of regressions with multiple measurements from individual sampling units. For Eco Manag 7:207–224CrossRefGoogle Scholar
  47. Wolfinger RD, Lin X (1997) Two Taylor-series approximation methods for nonlinear mixed models. Comput Stat Data Anal 25:465–490CrossRefGoogle Scholar
  48. Wykoff WR, Crookston NL, Stage AR (1982) User’s guide to the stand prognosis model. USDA Forest Service, Intermountain Forest and Range Experimental Station, Ogden, UT. General Technical Report INT-133, p 112Google Scholar
  49. Xu H, Sun Y, Wang X, Li Y (2014) Height-diameter models of Chinese fir (Cunninghamia lanceolata) based on nonlinear mixed-effects models in Southeast China. Adv J Food Sci Technol 6(4):445–452CrossRefGoogle Scholar
  50. Yang RC, Kozak A, Smith JHG (1978) The potential of Weibull-type functions as flexible growth curves. Can J For Res 8:424–431CrossRefGoogle Scholar
  51. Yang Y, Huang S, Meng SX, Trincado G, VanderSchaaf CL (2009) A multilevel individual tree basal area increment model for aspen in boreal mixedwood stands. Can J For Res 39:2203–2214CrossRefGoogle Scholar
  52. Yq Li, X-w Deng, Z-h Huang, W-h Xiang, W-d Yan, P-f Lei, X-l Zhou, C-h Peng (2015) Development and evaluation of models for the relationship between tree height and diameter at breast height for Chinese-fir plantations in subtropical China. PLoS ONE 10(4):e0125118.  https://doi.org/10.1371/journal CrossRefGoogle Scholar
  53. Yuancai L, Parresol BR (2001) Remarks on height–diameter modelling. USDA Forest Service, Southern Research Station, Asheville, NC. Research Note SRS-10, p 5Google Scholar
  54. Zeide B (1993) Analysis of growth equations. For Sci 39:594–616Google Scholar
  55. Zhang L (1997) Cross-validation of non-linear growth functions for modeling tree height–diameter distributions. Ann Bot 79:251–257CrossRefGoogle Scholar

Copyright information

© Northeast Forestry University and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Siavash Kalbi
    • 1
    Email author
  • Asghar Fallah
    • 1
  • Pete Bettinger
    • 2
  • Shaban Shataee
    • 3
  • Rassoul Yousefpour
    • 4
  1. 1.Sari Agriculture and Natural Resource UniversitySariIran
  2. 2.Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAthensUSA
  3. 3.Gorgan Agriculture and Natural Resource UniversityGorganIran
  4. 4.Faculty of Environment and Natural ResourcesUniversity of FreiburgFreiburgGermany

Personalised recommendations