Journal of Forestry Research

, Volume 29, Issue 4, pp 1099–1110 | Cite as

Group planting of cherry (Prunus avium L.) fosters growth and tree quality is superior to conventional row planting in Germany

  • Somidh SahaEmail author
Original Paper


Wild cherry trees produce high-quality timber and provide multiple ecosystem services. However, planting and tending cherry stands in conventional rows are too costly. Therefore, low density group planting was trialled as an alternative to row planting. The mortality, growth, and quality of planted cherry trees were compared between the group and row planting. The influence of neighbourhood competition and light availability on growth and quality was studied. The group and row planting of cherry trees were established at a wind-thrown site in southwestern Germany in the year 2000. In group planting, five cherry seedlings and seven lime seedlings (Tilia cordata Mill.) were planted with a 1 × 1 m spacing. In total, 60 groups were planted per hectare with a 13 × 13 m spacing. In contrast, 3300 seedlings (2475 cherries and 825 limes) were planted per hectare in row planting with a 3 × 1 m spacing. Ten groups and plots (10 × 10 m) were randomly established in group and row planting stand, respectively. The survival rate, stability (height to diameter ratio), diameter, and height growth were significantly higher in group planting. In the group plantings, 40.5% of cherry trees had straight stems and 13.5% had a monopodial crown compared with 15% with straight stems and 2% with a monopodial crown in row planting. The proportion of dominant cherry trees in canopy was 49% in groups compared with 22% in rows. The length of branch free bole was significantly higher in cherries planted in groups than those grown in rows. Intra- and interspecific competition reduced the growth and stability of cherry trees in row planting, but not in group planting. Light availability did not cause any significant effects on growth and quality between group and row planting. This first study on cherry group planting indicates that the survival rate, growth, and tree quality were higher in groups than in rows at this early development stage. The competition by naturally born seedlings was an important reason for the difference in performance between group and row planting. This study will encourage forest practitioners to establish more cherry group planting trials on multiple sites to test the effectiveness of this alternative technique as a tool of regeneration and restoration silviculture.


Group planting Tree growth Tree quality Interspecific competition Intraspecific competition Photosynthetically active photon flux density Total site factor 



I thank Gabriel Burns for help in data collection and Jürgen Bauhus for his cooperation. I acknowledge the support of Gunter Hepfer (Forester, Neuried/Missenheim) for support in this research.


  1. Abetz P, Kladtke J (2002) The target tree management system. Forstwiss Centbl 121(2):73–82CrossRefGoogle Scholar
  2. Abetz P, Ohnemus K (1999) Varification of the future-crop-tree-norms (ZB-norm) for beech in a thinning experiment. Allg Forst Jagdztg 170(9):157–165Google Scholar
  3. Ammer C, Dingel C (1997) Investigating the effects of strong competition by inferior tree species on growth and quality of young European oaks. Forstwiss Centbl 116(6):346–358CrossRefGoogle Scholar
  4. Ammer C, Ziegler C, Knoke T (2005) Assessing intra- and interspecfic competition in thickets of broadleaved tree species. Allg Forst Jagdztg 176(5):85–94Google Scholar
  5. Andrzejczyk T, Liziniewicz M, Drozdowski S (2015) Effect of spacing on growth and quality parameters in sessile oak (Quercus petraea) stands in central Poland: results 7 years after planting. Scand J Forest Res 30(8):710–718CrossRefGoogle Scholar
  6. Ballare CL, Scopel AL, Sanchez RA (1990) Far-red radiation reflected from adjacent leaves—an early signal of competition in plant canopies. Science 247(4940):329–332CrossRefPubMedGoogle Scholar
  7. Binkley D, Campoe OC, Gspaltl M, Forrester DI (2013) Light absorption and use efficiency in forests: why patterns differ for trees and stands. For Ecol Manage 288:5–13CrossRefGoogle Scholar
  8. Brang P, Bürgi A (2004) Trupppflanzung im Test. Zürcher Wald 36(5):13–16Google Scholar
  9. Brang P, Combe J (2001) Extensive Verjüngungsverfahren nach Lothar, 1st edn. Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft, Birmensdorf-Zürich, pp 1–17Google Scholar
  10. Canham CD, Denslow JS, Platt WJ, Runkle JR, Spies TA, White PS (1990) Light regimes beneath closed canopies and tree-fall gaps in temperate and tropical forests. Can J For Res 20(5):620–631CrossRefGoogle Scholar
  11. Canham CD, LePage PT, Coates KD (2004) A neighborhood analysis of canopy tree competition: effects of shading versus crowding. Can J For Res 34(4):778–787CrossRefGoogle Scholar
  12. Chakraborty T, Saha S, Reif A (2013) Decrease in available soil water storage capacity reduces vitality of young understorey European Beeches (Fagus sylvatica L.): a case study from the Black Forest, Germany. Plants 2(4):676–698CrossRefPubMedPubMedCentralGoogle Scholar
  13. Demolis C, François D, Delannoy L (1997) Que sont devenues les plantations de feuillus par points d’appui? Office National des Forêts. Bull Tech 32:27–37Google Scholar
  14. Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carre G, Marquez JRG, Gruber B, Lafourcade B, Leitao PJ (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36(1):27–46CrossRefGoogle Scholar
  15. Drouineau S, Laroussinie O, Birot Yves, Terrasson D, Formery T, Roman-Amat B (2000) Joint evaluation of storms, forest vulnerability and their restoration. European Forest Institute, Joensuu, p 48Google Scholar
  16. Ehring A, Keller O (2006) Eichen-Trupp-Pflanzung in Baden-Württemberg. AFZ/Der Wald 9:491–494Google Scholar
  17. Finzi AC, Canham CD (2000) Sapling growth in response to light and nitrogen availability in a southern New England forest. For Ecol Manage 131(1):153–165CrossRefGoogle Scholar
  18. Forrester DI (2014) A stand-level light interception model for horizontally and vertically heterogeneous canopies. Ecol Model 276:14–22CrossRefGoogle Scholar
  19. Gauer J, Aldinger E (2005) Waldökologische Naturräume Deutschlands—Forstliche Wuchsgebiete und Wuchsbezirke, mit Karte 1: 100.000. Freiburg i. Br.: Mitteilungen des Vereins für Forstliche Standortskunde und Forstpflanzenzüchtung, p 1–324Google Scholar
  20. Gaul T, Stüber V (1996) Der Eichen-Nelder-Verbandsversuch Göhrde. Forst und Holz 51:70–75Google Scholar
  21. German Weather Service (2011) Drought conditions in Europe 2011. Offenbach-Germany, German Weather Service, p 1–3. (, Accessed 2 Nov 2016
  22. Gockel H (1995) Die Trupp-Pflanzung, Ein neues Pflanzschema zur Begründung von Eichenbeständen. Forst und Holz 50:570–575Google Scholar
  23. Gockel H, Rock J, Schulte A (2001) Aufforsten mit Eichen-Trupppflanzungen. AFZ/Der Wald 5:223–226Google Scholar
  24. Gussone H, Richter A (1994) Eichen-Nester—Zweiter Bericht der Versuche mit Nesterpflanzungen in Norddeutschland. Forst- und Holzwirt 49(11):300–304Google Scholar
  25. Hegyi F (1974) A simulation model for managing Jack-pine stands. Stockholm, Sweden. Royal Coll For 30:74–91Google Scholar
  26. Hein S (2009) Modelling natural pruning of common ash, sycamore and wild cherry. In: Spiecker H, Hein S, Makkonen-Spiecker K, Thies M (eds), Valuable broadleaved forests in Europe. European Forest Institute Research Report 22. Brill, Leiden, pp 103–122Google Scholar
  27. Henriksson J (2001) Differential shading of branches or whole trees: survival, growth, and reproduction. Oecologia 126(4):482–486CrossRefPubMedGoogle Scholar
  28. Kint V, Hein S, Campioli M, Muys B (2010) Modelling self-pruning and branch attributes for young Quercus robur L. and Fagus sylvatica L. trees. For Ecol Manage 260(11):2023–2034CrossRefGoogle Scholar
  29. Knowe SA, Hibbs DE (1996) Stand structure and dynamics of young red alder as affected by planting density. For Ecol Manage 82(1–3):69–85CrossRefGoogle Scholar
  30. Kohler M, Sohn J, Nagele G, Bauhus J (2010) Can drought tolerance of Norway spruce (Picea abies (L.) Karst.) be increased through thinning? Eur J For Res 129(6):1109–1118CrossRefGoogle Scholar
  31. Kraft G (1884) Beiträge zur lehre von den Durchforstungen, Schlagstellungen und Lichtungshieben. Klindworth’s Verlag, Hannover, pp 1–156Google Scholar
  32. Kuehne C, Kublin E, Pyttel P, Bauhus J (2013) Growth and form of Quercus robur and Fraxinus excelsior respond distinctly different to initial growing space: results from 24-year-old Nelder experiments. J For Res 24(1):1–14CrossRefGoogle Scholar
  33. Kuijper DPJ, Cromsigt J, Churski M, Adam B, Jedrzejewska B, Jedrzejewski W (2009) Do ungulates preferentially feed in forest gaps in European temperate forest? For Ecol Manage 258(7):1528–1535CrossRefGoogle Scholar
  34. Leder B (1996) Weichlaubhölzer im Eichen- und Buchen-jungbeständen. Forst und Holz 51(10):340–344Google Scholar
  35. Liziniewicz M, Andrzejczyk T, Drozdowski S (2016) The effect of birch removal on growth and quality of pedunculate oak in a 21-year-old mixed stand established by row planting. For Ecol Manage 364:165–172CrossRefGoogle Scholar
  36. McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman and Hall, London, pp 1–532CrossRefGoogle Scholar
  37. Nicolini E, Chanson B, Bonne F (2001) Stem growth and epicormic branch formation in understorey beech trees (Fagus sylvatica L.). Ann Bot 87(6):737–750CrossRefGoogle Scholar
  38. Olano JM, Laskurain NA, Escudero A, De La Cruz M (2009) Why and where do adult trees die in a young secondary temperate forest? The role of neighbourhood. Ann For Sci 66(1):105CrossRefGoogle Scholar
  39. Panayotov M, Kulakowski D, Tsvetanov N, Krumm F, Barbeito I, Bebi P (2016) Climate extremes during high competition contribute to mortality in unmanaged self-thinning Norway spruce stands in Bulgaria. For Ecol Manage 369:74–88CrossRefGoogle Scholar
  40. Petersen R (2007) Eichen-Trupp-Pflanzung—erste Ergebnisse einer Versuchsfläche im NFA Neuhaus. Forst und Holz 62(3):19–25Google Scholar
  41. Petersen R, Schüller S, Ammer C (2009) Early growth of planted pedunculate oak (Quercus petraea) in response to varying competition by birch (Betula pendula) over 8 years. Forstarchiv 80:208–214Google Scholar
  42. Pretzsch H (2009) Forest dynamics, growth, and yield. Springer, Berlin, pp 1–664CrossRefGoogle Scholar
  43. Pretzsch H, Biber P (2010) Size-symmetric versus size-asymmetric competition and growth partitioning among trees in forest stands along an ecological gradient in central Europe. Can J For Res 40(2):370–384CrossRefGoogle Scholar
  44. Rebetez M, Mayer H, Dupont O, Schindler D, Gartner K, JrP Kropp, Menzel A (2006) Heat and drought 2003 in Europe: a climate synthesis. Ann For Sci 63(6):569–577CrossRefGoogle Scholar
  45. Rock J, Gockel H, Schulte A (2003) Vegetationsdiversität in Eichen-Jungwüchsen aus unterschiedlichen Pflanzschemata. Beitr Forstwirtsch u Landsch ökol 37:11–17Google Scholar
  46. Rock J, Puettmann KJ, Gockel HA, Schulte A (2004) Spatial aspects of the influence of silver birch (Betula pendula L.) on growth and quality of young oaks (Quercus spp.) in central Germany. Forestry 77(3):235–247CrossRefGoogle Scholar
  47. Ruhm W (1997) Alternative—Kulturbegründung von Eichenmischwald. Österreichische Forstzeitung 108(7):29Google Scholar
  48. Saha S (2012) Development of tree quality, productivity, and diversity in oak (Quercus robur and Q. petraea) stands established by cluster planting. Ph.D. Dissertation, Freiburg: University of Freiburg, p 1–130, (, Accessed 3 July 2017
  49. Saha S, Kuehne C, Kohnle U, Brang P, Ehring A, Geisel J, Leder B, Muth M, Petersen R, Peter J, Ruhm W, Bauhus J (2012) Growth and quality of young oaks (Quercus robur and Q. petraea) grown in cluster plantings in central Europe: a weighted meta-analysis. For Ecol Manage 283:106–118CrossRefGoogle Scholar
  50. Saha S, Kuehne C, Bauhus J (2013) Tree species richness and stand productivity in low-density cluster plantings with oaks (Quercus robur L. and Q. petraea (Mattuschka) Liebl.). Forests 4(3):650–665CrossRefGoogle Scholar
  51. Saha S, Kuehne C, Bauhus J (2014) Intra- and interspecific competition differently influence growth and stem quality of young oaks (Quercus robur L. and Quercus petraea (Mattuschka) Liebl.). Ann For Sci 71(3):381–393CrossRefGoogle Scholar
  52. Saha S, Kuehne C, Bauhus J (2017) Lessons learned from oak cluster planting trials in central Europe. Can J For Res 47:139–148CrossRefGoogle Scholar
  53. Savill PS (2013) The silviculture of trees used in British forestry, 2nd edn. CAB International, Oxford, pp 1–280CrossRefGoogle Scholar
  54. Scherrer D, Bader MKF, Korner C (2011) Drought-sensitivity ranking of deciduous tree species based on thermal imaging of forest canopies. Agric For Meteorol 151(12):1632–1640CrossRefGoogle Scholar
  55. Schmidt M, Hanewinkel M, Kandler G, Kublin E, Kohnle U (2010) An inventory-based approach for modeling single-tree storm damage—experiences with the winter storm of 1999 in southwestern Germany. Can J For Res 40(8):1636–1652CrossRefGoogle Scholar
  56. Schraml U, Volz KR (2009) Do species matter? Valuable broadleaves as an object of public perception and policy—European Forest Institute Report 22. Leiden: S. Brill. Publishers, p 213–236Google Scholar
  57. Schutz JP, Gotz M, Schmid W, Mandallaz D (2006) Vulnerability of spruce (Picea abies) and beech (Fagus sylvatica) forest stands to storms and consequences for silviculture. Eur J For Res 125(3):291–302CrossRefGoogle Scholar
  58. Skiadaresis G, Saha S, Bauhus J (2016) Oak group planting produces a higher number of future crop trees, with better spatial distribution, than row planting. Forests 7:289–304CrossRefGoogle Scholar
  59. Sokal RR, Rolhf FJ (1995) Biometry, 3rd edn. W. H. Freeman, New York, pp 1–880Google Scholar
  60. Spellmann H, Baderschneider A (1988) Erste Auswertung eines Traubeneichen-Pflanzverbands-und Sortimentsversuches im Forstamt Hardegsen/Solling. Forst und Holz 19:447–450Google Scholar
  61. Spiecker H (1991) Controlling the diameter growth and the natural pruning of Sessile and Pedunculate oaks (Quercus petraea (Matt.) Liebl. and Quercus robur L.). Schriftenreihe der Landesforstverwaltung Baden-Württemberg 72:1–135Google Scholar
  62. Thies M, Hein S, Spiecker H (2009) Results of a questionnaire on management of valuable broadleaved forests in Europe—European Forest Institute Report 22. Leiden: S. Brill. Publishers, p 27–42Google Scholar
  63. United Nations Economic Commission for Europe (2000) Effects of the december 1999 storms on European timber markets. Geneva: Food and Agricultural Association, p 1–17, (, Accessed 3 July 2017
  64. United States Forest Service (2011) Field guides, methods and procedures. Phase 2 field guide—crowns: measurements and sampling-version 5.1, Washington DC: The United States Forest Service, p 1–310. (, Accessed 3 July 2017
  65. van Hees AFM (1997) Growth and morphology of pedunculate oak (Quercus robur L) and beech (Fagus sylvatica L) seedlings in relation to shading and drought. Ann For Sci 54(1):9–18CrossRefGoogle Scholar
  66. Loewe V, Gonzalez M, Balzarini M (2013) Wild cherry tree (Prunus avium L.) growth in pure and mixed plantations in South America. For Ecol Manage 306:31–41CrossRefGoogle Scholar
  67. von Lüpke B (1991) Einfluss der Konkurrenz von Weichlaubholz auf das Wachstum junger Traubeneichen. Forst und Holz 46:166–171Google Scholar
  68. von Lüpke B (1998) Silvicultural methods of oak regeneration with special respect to shade tolerant mixed species. For Ecol Manage 106(1):19–26CrossRefGoogle Scholar
  69. Wagner S, Roeker B (2000) Birkenanflug in Stieleichenkulturen. Untersuchungen zur Dynamik der Konkurrenz über 5 Vegetationsperioden. Forst und Holz 55:18–22Google Scholar
  70. Waring RH, Schlesinger WH (1985) Forest ecosystems: concepts and management. Academic Press Inc, Orlando-Florida, pp 1–340Google Scholar

Copyright information

© Northeast Forestry University and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institute for Technology Assessment and Systems Analysis (ITAS)Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Chair of Silviculture, Institute of Forest SciencesUniversity of FreiburgFreiburgGermany

Personalised recommendations