Skip to main content
Log in

Water-repellent efficiency of thermally modified wood as affected by its permeability

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

This study shows how the air permeability of thermally modified wood contributes to its water-repellent efficiency. For this purpose, freshly cut boards of hornbeam (Carpinus betulus), poplar (Populus nigra), and heartwood of oak (Quercus castanifolia) were modified at a steam temperature of 180 °C for 3 h inside a ThermoWood kiln. The porous structure, permeability, and water uptake of wood were affected differently by thermal modification, depending on the wood species. The creation of micro-cracks in the cell walls, due to collapsing of fiber cells, resulted in a noticeable increase in the permeability of hornbeam. Despite checking in the poplar wood structure, its permeability was negatively affected by thermal modification. In contrast to oak and poplar, a negative water-repellent efficiency was observed for the modified hornbeam, caused by an increase in the permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abubakari A, Avramidis S, Oliveira LC (2012) Impact of radio frequency heating pre-treatment on the kiln drying characteristics of sub-alpine fir. Eur J Wood Wood Prod 70(1):245–251

    Article  Google Scholar 

  • Alexiou PM, Wilkins AP, Hartley J (1990) Effect of presteaming on drying rate, wood anatomy and shrinkage of regrowth Eucalyptus pilularis Sm. Wood Sci Technol 24(1):103–110

    Article  CAS  Google Scholar 

  • Andersson S, Serimaa R, Väänänen T, Paakkari T, Jämsä S, Viitaniemi P (2005) X-ray scattering studies of thermally modified Scots pine (Pinus sylvestris L.). Holzforschung 59(4):422–427

    Article  CAS  Google Scholar 

  • Anonymous (2003) ThermoWood handbook: Finnish ThermoWood Association

  • Awoyemi L, Cooper PA, Ung TY (2009) In-treatment cooling during thermal modification of wood in soy oil medium: soy oil uptake, wettability, water uptake and swelling properties. Eur J Wood Wood Prod 67(4):465–470

    Google Scholar 

  • Bao FC, Lu JX, Avramidis S (1999) On the permeability of main wood species in China. Holzforschung 53:350–354

    Article  CAS  Google Scholar 

  • Bastani A, Adamopoulos S, Militz H (2015) Water uptake and wetting behaviour of furfurylated, N-methylol melamine modified and heat-treated wood. Eur J Wood Wood Prod 73(5):627–634

    Article  CAS  Google Scholar 

  • Boonstra MJ, Tjeerdsma B (2006) Chemical analysis of heat treated softwoods. Holz als Roh-und Werkstoff 64:204–211

    Article  CAS  Google Scholar 

  • Boonstra MJ, Rijsdijk JF, Sander C, Kegel E, Tjeerdsma B, Militz H, Acker J, Stevens M (2006) Microstructral and physical aspects of heat treated wood. Part 2. Hardwoods. Maderas Ciencia y tecnología 8(3):209–218

    Article  CAS  Google Scholar 

  • Cai LP, Oliveira LC (2007) Gas permeability of wet wood and normal wood of sub-alpine fir in relation to drying. Dry Technol 25:501–505

    Article  Google Scholar 

  • Chen PYS (1975) The effect of steaming time and temperature on the longitudinal permeability of black walnut. Wood Fiber Sci 7(3):222–225

    Google Scholar 

  • Dashti H, Tarmian A, Faezipour M, Hejazi S, Shahverdi M (2012) Effect of pre-steaming on mass transfer properties of Picea abies L.; a gymnosperm species with torus margo pit membrane. BioResources 7:1907–1918

    Article  CAS  Google Scholar 

  • Dundar T, Buyuksari U, Avci E, Akkiliç H (2012) Effect of heat treatment on the physical and mechanical properties of compression and opposite wood of black pine. BioResources 7(4):5009–5018

    Article  CAS  Google Scholar 

  • Esteves BM, Pereira HM (2009) Wood modification by heat treatment: a review. BioResources 4(1):370–404

    CAS  Google Scholar 

  • Fengel D, Wegener G (1989) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin

    Google Scholar 

  • Gosselink RJA, Krosse AMA, Putten JC, Kolk JC, Klerk-Engels B, Dam JEG (2004) Wood preservation of low-temperature carbonization. Ind Crop Prod 19:3–12

    Article  CAS  Google Scholar 

  • Guller B (2012) Effects of heat treatment on density, dimensional stability and color of Pinus nigra wood. Afr J Biotechnol 11(9):2204–2209

    Google Scholar 

  • Hietala S, Maunu SL, Sundholm F, Jämsä S, Viitaniemi P (2002) Structure of thermally modified wood studied by liquid state NMR measurements. Holzforschung 56:522–528

    Article  CAS  Google Scholar 

  • Jämsä S, Viitaniemi P (2001) Heat treatment of wood, better durability without chemicals. In: Proceedings of special seminar held in antibes, France, February 9, pp 47–51

  • Johansson D, Sehlstedt-Persson M, Moren T (2006) Effect of heat treatment on capillary water absorption of heat-treated pine, spruce and birch. Wood Struct Prop 6:251–255

    Google Scholar 

  • Kartal SN, Hwang WJ, Imamura Y (2007) Water absorption of boron-treated and heat-modified wood. J Wood Sci 53(5):454–457

    Article  CAS  Google Scholar 

  • Liu HH, Wang QW, Yang L, Jiang T, Cai YC (2005) Modification of larch wood by intensive microwave irradiation. For Res 16(3):237–240

    CAS  Google Scholar 

  • Metsa-Kortelainen S, Antikainen T, Viitaniemi P (2006) The water absorption of sapwood and heartwood of Scots pine and Norway spruce heat-treated at 170 °C, 190 °C, 210 °C and 230 °C. Holz als Roh-und Werkstoff 64:192–197

    Article  Google Scholar 

  • Nasswettrova A, Smira P, Jiří Z, Sebera V (2014) Axial permeability of beech wood treated by microwave heating for distilled water. Wood Res 59(1):25–37

    Google Scholar 

  • Poonia PK, Tripathi S, Sihag K, Kumar S (2015) Effect of microwave treatment on air permeability and preservative impregnation of Eucalyptus tereticornis wood. J Indian Acad Wood Sci 12(2):89–93

    Article  Google Scholar 

  • Ramezanpour M, Tarmian A, Taghiyari HR (2014) Improving impregnation properties of fir wood to acid copper chromate (ACC) with microwave pre-treatment. iForest 8:89–94

    Article  Google Scholar 

  • Rayirath P, Avramidis S (2008) Some aspects of western hemlock air permeability. Maderas Ciencia y tecnología 10(3):185–193

    Article  Google Scholar 

  • Reinprecht L, Rešetka M, Makovíny I (2010) Impregnability of spruce wood after its treatment with microwaves. Acta Fac Xylologiae Zvolen 52(2):43–51

    Google Scholar 

  • Rhatigan RG, Milota MR, Morrell JJ, Lavery MR (2003) Effect of high temperature drying on permeability and treatment of western hemlock lumber. For Prod J 53(9):55–58

    Google Scholar 

  • Rousset P, Perre P, Girad P (2004) Modification of mass transfer properties in poplar wood (P. robusta) by a heat treatment at high temperature. Holz Roh Werkst 62:113–119

    Article  CAS  Google Scholar 

  • Sayar M, Tarmian A (2013) Modification of water vapor diffusion in poplar wood (Populus nigra L.) by steaming at high temperatures. Turk J Biol 37:511–515

    Google Scholar 

  • Siau JF (1995) Transport processes in wood. Springer, New York

    Google Scholar 

  • Taghiyari HR (2013) Effects of heat-treatment on permeability of untreated and nanosilver-impregnated native hardwoods. Maderas Ciencia y tecnología 15(2):183–194

    CAS  Google Scholar 

  • Taghiyari HR, Malek BM (2014) Effect of heat treatment on longitudinal gas and liquid permeability of circular and square-shaped native hardwood specimens. Heat Mass Transf 50(8):1125–1136

    Article  CAS  Google Scholar 

  • Taghiyari HR, Talaei A, Karimi A (2011) A correlation between the gas and liquid permeabilities of beech wood heat-treated in hot water and steam mediums. Maderas Ciencia y tecnología 13(3):329–336

    Article  CAS  Google Scholar 

  • Torgovnikov G, Vinden P (2009) High intensity microwave wood modification for increasing permeability. For Prod J 59(4):84–92

    Google Scholar 

  • Wang JY, Cooper PA (2005) Effect of oil type, temperature and time on moisture properties of hot oil-treated wood. Holz als Roh-und Werkstoff 63:417–422

    Article  CAS  Google Scholar 

  • Zauer M, Hempel S, Pfriem A, Mechtcherine V, Wagenführ A (2014) Investigations of the pore-size distribution of wood in the dry and wet state by means of mercury intrusion porosimetry. Wood Sci Technol 48(6):1229–1240

    Article  CAS  Google Scholar 

  • Zhang YL, Cai LP (2008) Impact of heating speed on permeability of sub-alpine fir. Wood Sci Technol 42(3):241–250

    Article  CAS  Google Scholar 

  • Zlahtic N, Thaler N, Humar M (2015) Water uptake of thermally modified Norway spruce. Drv Ind 66(4):273–279

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Ingo Burgert, Prof. Emil Engelund Thybring, Ms. Vivian Merk and Ms. Stéphane Croptier in the Wood Materials Science Group at the Institute for Building Materials at ETH Zurich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asghar Tarmian.

Additional information

Project funding: The work was supported by Scientific Center of Excellence for Applied Management of Fast-Growing Wood Species at University of Tehran.

The online version is available at http://www.springerlink.com

Corresponding editor: Tao Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarmian, A., Mastouri, A. Water-repellent efficiency of thermally modified wood as affected by its permeability. J. For. Res. 29, 859–867 (2018). https://doi.org/10.1007/s11676-017-0495-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-017-0495-3

Keywords

Navigation