Journal of Forestry Research

, Volume 29, Issue 3, pp 623–629 | Cite as

Non-aerated liquid culture promotes shoot organogenesis in Eucalyptus globulus Labill

  • T. D. Salla
  • C. dos S. Silva
  • K. L. de G. Machado
  • L. V. Astarita
  • E. R. Santarém
Original Paper


Eucalyptus is very recalcitrant to in vitro culture. In this research, an efficient shoot organogenesis system was developed using 60-day-old plants of Eucalyptus globulus grown in vitro and non-aerated liquid medium to improve shoot proliferation. Cultures were initiated with hypocotyls and leaf segments from plantlets cultivated on semisolid ½ MS modified medium supplemented with 4.44 µM 6-Benzyladenine (BA) and 16.1 µM 1-Naphthaleneacetic acid (NAA). Calli were transferred to shoot induction medium, with either 0.5 or 2.7 µM NAA. Shoot multiplication was carried out on 4.44 µM BA + 0.5 µM NAA medium, and semisolid and non-aerated liquid systems were compared for improving shoot proliferation. Rooting of adventitious shoots was evaluated on medium containing NAA or Indole-3-butyric acid -IBA (5 and 16 µM). Callogenesis was obtained from both types of explants, although shoot formation was only obtained from leaf-derived calli. Shoot proliferation on 4.44 µM BA + 0.5 µM NAA resulted in the most shoots/callus. Non-aerated liquid medium was more efficient in promoting shoot multiplication (53.5 shoots/callus) than was semisolid medium (28.5 shoots/callus). Levels of phenolic compounds were significantly reduced in the shoots cultivated in liquid medium. Efficient rooting (76%) was obtained using 16 µM IBA.


Adventitious shoots Callus Liquid medium Micropropagation Phenolic compounds Rooting 



This work was supported by the National Council for Scientific and Technological Development (CNPq)/Brazil, under Grant 477538/2013-4. The authors are grateful to Suzano Papel e Celulose (former RioCell, Brazil) for providing seeds of E. globulus and to Janaína Belquis da S. P. Langois for technical assistance.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abril N, Gion J-M, Kerner R, Müller-Starck G, Navarro Cerrillo RM, Plomion C et al (2011) Proteomics research on forest trees, the most recalcitrant and orphan plant species. Phytochemistry 72:1219–1242CrossRefPubMedGoogle Scholar
  2. Aggarwal D, Kumar A, Reddy SM (2010) Shoot organogenesis in elite clones of Eucalyptus tereticornis. Plant Cell, Tissue Organ Cult 102:45–52CrossRefGoogle Scholar
  3. Ahmad I, Hussain T, Ashraf I, Nafees M, Maryam Rafay M et al (2013) Lethal effects of secondary metabolites on plant tissue culture. Am Eurasian J Agric Environ Sci 13(4):539–547Google Scholar
  4. Babaei N, Abdullah NAP, Saleh G, Abdullah TL (2013) Control of contamination and explant browning in Curculigo latifolia in vitro cultures. J Med Plants Res 7(8):448–454Google Scholar
  5. Bandyopadhyay S, Cane K, Rasmussen G, Hamill JD (1999) Efficient plant regeneration from seedling explants of two commercially important temperate eucalypt species–Eucalyptus nitens and E. globulus. Plant Sci 140:189–198CrossRefGoogle Scholar
  6. Brondani GE, Baccarin FJB, Ondas HWW, Stape JL, Gonçalves AN, Almeida M (2012) Low temperature, IBA concentrations and optimal time for adventitious rooting of Eucalyptus benthamii mini-cuttings. J J For Res 23(4):583–592CrossRefGoogle Scholar
  7. Bunn E, Senaratna T, Sivasithamparam K, Dixon KN (2005) In vitro propagation of Eucalyptus phylacis L. Johnson and K. Hill, a critically endangered relict from Western Australia. In Vitro Cell Dev Biol Plant 41:812–815CrossRefGoogle Scholar
  8. Cuenca B, Sánchez C, Aldrey A et al (2017) Micropropagation of axillary shoots of hybrid chestnut (Castanea sativa × C. crenata) in liquid medium in a continuous immersion system. Plant Cell, Tissue Organ Cult. doi: 10.1007/s11240-017-1285-5 Google Scholar
  9. Dibax R, Eisfeld CL, Cuquel FL, Koehler H, Quoirin M (2005) Plant regeneration from cotyledonary explants of Eucalyptus camaldulensis. Sci Agric 624:406–412CrossRefGoogle Scholar
  10. Dibax R, Deschamps C, Bespalhok Filho JC, Vieira E, Molinari C, Campos D et al (2010) Organogenesis and Agrobacterium tumefaciens-mediated transformation of Eucalyptus saligna with P5CS gene. Biol Plant 54:6–12CrossRefGoogle Scholar
  11. Fett-Neto AG, Fett JP, Goulart LWV, Pasquali G, Termignoni RR, Ferreira AG (2001) Distinct effects of auxin and light on adventitious root development in Eucalyptus saligna and Eucalyptus globulus. Tree Physiol 21:457–464CrossRefPubMedGoogle Scholar
  12. González R, Ríos D, Avilés F, Sánchez-Olate M (2011) Multiplicación in vitro de Eucalyptus globulus mediante sistema de inmersión temporal. Bosque 32(2):147–154CrossRefGoogle Scholar
  13. Hajari E, Watt MP, Mycock DJ, McAlister B (2006) Plant regeneration from induced callus of improved Eucalyptus clones. S Afr J Bot 72:195–201CrossRefGoogle Scholar
  14. Jones AMP, Saxena PK (2013) Inhibition of phenylpropanoid biosynthesis in Artemisia annua L.: a novel approach to reduce oxidative browning in plant tissue culture. PLoS ONE 8(10):e76802CrossRefPubMedPubMedCentralGoogle Scholar
  15. Krishna H, Sairam RK, Singh SK, Patel VB, Sharma RR et al (2008) Mango explant browning: effect of ontogenic age, mycorrhization and pre-treatments. Sci Hortic 118:132–138Google Scholar
  16. Kumar GP, Subiramani S, Govindarajan S, Sadasivam V, Manickam V, Mogilicherla K et al (2015) Evaluation of different carbon sources for high frequency callus culture with reduced phenolic secretion in cotton (Gossypium hirsutum L.) cv. SVPR-2. Plant Biotechnol Rep 7:72–80CrossRefGoogle Scholar
  17. Lopes da Silva AL, Gollo AL, Brondani GE, Horbach MA, Oliveira LS, Machado MP et al (2015) Micropropagation of Eucalyptus saligna SM. from cotyledonary nodes. Pak J Bot 47:311–318Google Scholar
  18. Mabona U, Van Vuuren SF (2013) Southern African medicinal plants used to treat skin diseases. S Afr J Bot 87:175–193CrossRefGoogle Scholar
  19. Marbun CLM, Toruan-Mathiusa N, Reflini Utomo C, Liwang T (2015) Micropropagation of embryogenic callus of oil palm (Elaeis guineensis Jacq.) using temporary immersion system. Proc Chem 14:122–129CrossRefGoogle Scholar
  20. Matsunaga E, Nanto K, Oishi M, Ebinuma H, Morishita Y, Sakurai N et al (2012) Agrobacterium-mediated transformation of Eucalyptus globulus using explants with shoot apex with introduction of bacterial choline oxidase gene to enhance salt tolerance. Plant Cell Rep 31:225–235CrossRefPubMedGoogle Scholar
  21. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  22. Navroski MC, Reiniger LRS, Araújo MM, Curti AR, Pereira MO (2014) In vitro establishment and multiplication of genotypes of Eucalyptus dunnii Maiden. Cerne 20:139–146CrossRefGoogle Scholar
  23. Nugent G, Chandler SF, Whiteman P, Stevenson TW (2001) Somatic embryogenesis in Eucalyptus globulus. Plant Cell, Tissue Organ Cult 67:85–88CrossRefGoogle Scholar
  24. Oliveira C, Degenhardt-Goldbach J, Bettencourt GMF, Amano E, Franciscon L, Quoirin M (2016) Micropropagation of Eucalyptus grandis x E. urophylla AEC 224 clone. J For Res 27:1–11CrossRefGoogle Scholar
  25. Quiala E, Canal M-J, Meijón M, Rodríguez R, Chávez M, Valledor L et al (2012) Morphological and physiological responses of proliferating shoots of teak to temporary immersion and BA treatments. Plant Cell, Tissue Organ Cult 109:223–234CrossRefGoogle Scholar
  26. Quoirin M, Quisen R (2006) Advances in genetic transformation of Eucalyptus species. In: Franche C (ed) Molecular biology tropical plant research signpost Kerala, pp 41–56Google Scholar
  27. Ramírez-Mosqueda MA, Iglesias-Andreu LG (2016) Evaluation of different temporary immersion systems (BIT®, BIG, and RITA®) in the micropropagation of Vanilla planifolia Jacks. In Vitro Cell Dev Biol Plant 52:154–160CrossRefGoogle Scholar
  28. Rathore JS, Rai MK, Phulwaria M, Shekhawat NS (2014) A liquid culture system for improved micropropagation of mature Acacia nilotica (L.) Del. ssp. indica and ex vitro rooting. Proc Natl Acad Sci 84:193–200Google Scholar
  29. Resquin F, Barrichelo LEG, Silva Júnior FG, Brito JO, Sansigolo CA (2006) Wood quality for kraft pulping of Eucalyptus globulus origins planted in Uruguay. Sci For 72:57–66Google Scholar
  30. Salla TD, da Silva TR, Astarita LV, Santarém ER (2014) Streptomyces rhizobacteria modulate the secondary metabolism of Eucalyptus plants. Plant Physiol Biochem 85:14–20CrossRefPubMedGoogle Scholar
  31. Sávio LE, Astarita LV, Santarém ER (2012) Secondary metabolism in micropropagated Hypericum perforatum L. grown in non-aerated liquid medium. Plant Cell, Tissue Organ Cult 108:465–472CrossRefGoogle Scholar
  32. Schwambach J, Fadanelli C, Fett-Neto A (2005) Mineral nutrition and adventitious rooting in microcuttings of Eucalyptus globulus. Tree Physiol 25:487–494Google Scholar
  33. Zuraida AR, Nurul Shahnadz AH, Harteeni A, Roowi S, Che Radziah CMZ, Sreeramanan S (2011) A novel approach for rapid micropropagation of maspine pineapple (Ananas comosus L.) shoots using liquid shake culture system. Afr J Biotech 10:3859–3866CrossRefGoogle Scholar

Copyright information

© Northeast Forestry University and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • T. D. Salla
    • 1
  • C. dos S. Silva
    • 1
  • K. L. de G. Machado
    • 1
  • L. V. Astarita
    • 1
  • E. R. Santarém
    • 1
  1. 1.Laboratory of Plant Biotechnology, Faculdade de BiociênciasPontifícia Universidade Católica do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations