Skip to main content
Log in

The progress of operational forest fire monitoring with infrared remote sensing

  • Review Article
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Forest wildfires pose significant and growing threats to human safety, wildlife habitat, regional economies and global climate change. It is crucial that forest fires be subject to timely and accurate monitoring by forest fire managers and other stake-holders. Measurement by spaceborne equipment has become a practical and appealing method to monitor the occurrence and development of forest wildfires. Here we present an overview of the principles and case studies of forest fire monitoring (FFM) with satellite- and drone-mounted infrared remote sensing (IRRS). This review includes four types of FFM-relevant IRRS algorithms: bi-spectral methods, fixed threshold methods, spatial contextual methods, and multi-temporal methods. The spatial contextual methods are presented in detail since they can be applied easily with commonly available satellite IRRS data, including MODIS, VIIRS, and Landsat 8 OLI. This review also evaluates typical cases of FFM using NOAA-AVHRR, EOS-MODIS, S-NPP VIIRS, Landsat 8 OLI, MSG-SEVIRI, and drone infrared data. To better implement IRRS applications in FFM, it is important to develop accurate forest masks, carry out systematic comparative studies of various forest fire detection systems (known as forest fire products), and improve methods for assessing the accuracy of forest fire detection. Medium-resolution IRRS data are effective for landscape-scale FFM, and the VIIRS 375 m contextual algorithm and RST-FIRES algorithm are helpful for closely tracking forest fires (including small and short-lived fires) and forest-fire early warning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad AAA (2014) A review on forest fire detection techniques. Int J Distrib Sensor Netw 10(3):1–12

    Google Scholar 

  • Ambrosia V, Wegener S, Zajkowski T, Sullivan D, Buechel S, Enomoto F, Lobitz B, Johan S, Brass J, Hinkley E (2011) The Ikhana unmanned airborne system (UAS) western states fire imaging missions: from concept to reality (2006–2010). Geocarto Int 26(2):85–101

    Article  Google Scholar 

  • Andreae MO (2013) Magnitude and impacts of vegetation fire emissions on the atmosphere. In: Goldammer JG (ed) Vegetation fires and global change: challenges for concerted international action: a white paper directed to the United Nations and International Organizations. Kessel Publishing House, Remagen, pp 171–180

    Google Scholar 

  • Arino O, Melinotte JM (1998) The 1993 Africa fire map. Int J Remote Sens 19(11):2019–2023

    Article  Google Scholar 

  • Arino O, Rosaz JM (1999) 1997 and 1998 World ATSR Fire Atlas using ERS-2 ATSR-2 data. In: Neuenschwander LF, Ryan KC, Golberg GE (eds) Proceedings of the joint fire science conference. University of Idaho and the International Association of Wildland Fire, Boise, pp 177–182

    Google Scholar 

  • Blackett M (2015) An initial comparison of the thermal anomaly detection products of MODIS and VIIRS in their observation of Indonesian volcanic activity. Remote Sens Environ 171:75–82

    Article  Google Scholar 

  • Boles SH, Verbyla DL (2000) Comparison of three AVHRR-based fire detection algorithms for interior Alaska. Remote Sens Environ 72(1):1–16

    Article  Google Scholar 

  • Calle A, Casanova JL (2008) Forest fires and remote sensing. In: Coskun HG, Cigizoglu HK, Maktav MD (eds) Integration of information for environmental security. Springer, Berlin, pp 247–290

    Chapter  Google Scholar 

  • Cao CY, De Luccia FJ, Xiong XX, Wolfe R, Weng FZ (2014) Early on-orbit performance of the visible infrared imaging radiometer suite onboard the suomi national polar-orbiting partnership (S-NPP) satellite. IEEE Trans Geosci Remote 52(2):1142–1156

    Article  Google Scholar 

  • Cheng D, Rogan J, Schneider L, Cochrane M (2013) Evaluating MODIS active fire products in subtropical Yucatán forest. Remote Sens Lett 4(10):455–464

    Article  Google Scholar 

  • Chuvieco E, Martin MP (1994) A simple method for fire growth mapping using AVHRR channel 3 data. Int J Remote Sens 15(16):3141–3146

    Article  Google Scholar 

  • Csiszar I, Schroeder W, Giglio L, Ellicott E, Vadrevu KP, Justice CO, Wind B (2014) Active fires from the Suomi NPP visible infrared imaging radiometer suite: product status and first evaluation results. J Geophys Res 119(2):803–816

    Google Scholar 

  • Cuomo V, Lasaponara R, Tramutoli V (2001) Evaluation of a new satellite-based method for forest fire detection. Int J Remote Sens 22(9):1799–1826

    Article  Google Scholar 

  • Dennison PE, Brewer SC, Arnold JD, Moritz MA (2014) Large wildfire trends in the western United States, 1984–2011. Geophy Res Lett 41(8):2928–2933

    Article  Google Scholar 

  • Dozier J (1981) A method for satellite identification of surface temperature fields of subpixel resolution. Remote Sens Environ 11:221–229

    Article  Google Scholar 

  • Eckmann TC, Roberts DA, Still CJ (2008) Using multiple endmember spectral mixture analysis to retrieve subpixel fire properties from MODIS. Remote Sens Environ 112:3773–3783

    Article  Google Scholar 

  • Elvidge CD, Zhizhin M, Hsu FC, Baugh KE (2013) VIIRS nightfire: satellite pyrometry at night. Remote Sens 5(9):4423–4449

    Article  Google Scholar 

  • Filizzola C, Corrado R, Marchese F, Mazzeo G, Paciello R, Pergola N, Tramutoli V (2016) RST-FIRES, an exportable algorithm for early-fire detection and monitoring: description, implementation, and field validation in the case of the MSG-SEVIRI sensor. Remote Sens Environ 186:196–216

    Article  Google Scholar 

  • Flannigan MD, Haar THV (1986) Forest fire monitoring using NOAA satellite AVHRR. Canadian J Forest Res 16(5):975–982

    Article  Google Scholar 

  • Giglio L, Kendall JD (2001) Application of the Dozier retrieval to wildfire characterization: a sensitivity analysis. Remote Sens Environ 77(1):34–49

    Article  Google Scholar 

  • Giglio L, Schroeder W (2014) A global feasibility assessment of the bi-spectral fire temperature and area retrieval using MODIS data. Remote Sens Environ 152:166–173

    Article  Google Scholar 

  • Giglio L, Kendall JD, Justice CO (1999) Evaluation of global fire detection algorithms using simulated AVHRR infrared data. Int J Remote Sens 20(10):1947–1985

    Article  Google Scholar 

  • Giglio L, Descloitres J, Justice CO, Kaufman YJ (2003) An enhanced contextual fire detection algorithm for MODIS. Remote Sens Environ 87(2):273–282

    Article  Google Scholar 

  • Giglio L, Csiszar I, Justice CO (2006) Global distribution and seasonality of active fires as observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. J Geophys Res 111(G2):1–12

    Article  Google Scholar 

  • Giglio L, Csiszar I, Restás Á, Morisette JT, Schroeder W, Morton D, Justice CO (2008) Active fire detection and characterization with the advanced spaceborne thermal emission and reflection radiometer (ASTER). Remote Sens Environ 112(6):3055–3063

    Article  Google Scholar 

  • Giglio L, Schroeder W, Justice CO (2016) The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens Environ 178:31–41

    Article  Google Scholar 

  • Gong P, Pu R, Li Z, Scarborough J, Clinton N, Levien LM (2006) An integrated approach to wildland fire mapping of California, USA using NOAA/AVHRR data. Photogramm Eng Remote Sens 72(2):139–150

    Article  Google Scholar 

  • Kaufman YJ, Tucker CJ, Fung I (1990) Remote sensing of biomass burning in the tropics. J Geophys Res 95(D7):9927–9939

    Article  Google Scholar 

  • Kaufman YJ, Justice C, Flynn L (1998) Monitoring global fires from EOS-MODIS. J Geophys Res 102(29):611–624

    Google Scholar 

  • Kennedy PJ, Belward AS, Gregoire JM (1994) An improved approach to fire monitoring in West Africa using AVHRR data. Int J Remote Sens 15(11):2235–2255

    Article  Google Scholar 

  • Koeppen W, Pilger E, Wright R (2011) Time series analysis of low resolution thermal infrared satellite data for detecting thermal anomalies: a hybrid approach. Bull Volcanol 73(5):577–593

    Article  Google Scholar 

  • Koltunov A, Ustin SL (2007) Early fire detection using non-linear multitemporal prediction of thermal imagery. Remote Sens Environ 110(1):18–28

    Article  Google Scholar 

  • Langaas S (1992) Temporal and spatial distribution of Savannah fires in Senegal and the Gambia, West Africa, 1989–1990, derived from multi-temporal AVHRR night images. Int J Wildland Fire 2(1):21–36

    Article  Google Scholar 

  • Lavrov A, Utkin AB, Vilar R, Fernandes A (2006) Evaluation of smoke dispersion from forest fire plumes using lidar experiments and modeling. Int J Therm Sci 45(9):848–859

    Article  Google Scholar 

  • Li Z, Nadon S, Cihlar J (2000) Satellite-based detection of Canadian boreal forest fires: development and application of the algorithm. Int J Remote Sens 21(16):3057–3069

    Article  Google Scholar 

  • Li X, Kaufman YJ, Ichoku C, Fraser R, Trishcenko A, Giglio L, Kin J, Yu X (2001) A review of AVHRR-based active fire detection algorithms: principles, limitations, and recommendations. In: Ahern FJ, Goldammer JG, Justice CO (eds) Global and regional vegetation fire monitoring from space: planning and coordinated international effort. SPB Academic, Hague, pp 199–225

    Google Scholar 

  • Li ZQ, Fraser R, Jin J, Abuelgasim AA, Csiszar I, Gong P, Pu R, Hao W (2003) Evaluation of algorithms for fire detection and mapping across North America from satellite. J Geophys Res 108(D2):171–181

    Article  Google Scholar 

  • Li XL, Song WG, Lian LP, Wei XG (2015) Forest fire smoke detection using back-propagation neural network based on MODIS data. Remote Sens 7(4):4473–4498

    Article  Google Scholar 

  • Lin L, Meng Y, Yue AZ, Yuan Y, Liu XY, Chen JB, Zhang MM, Chen JS (2016) A spatio-temporal model for forest fire detection using HJ-IRS satellite data. Remote Sens 8(5):403

    Article  Google Scholar 

  • Loveland TR, Irons JR (2016) Landsat 8: the plans, the reality, and the legacy. Remote Sens Environ 185:1–6

    Article  Google Scholar 

  • Martell DL (2015) A review of recent forest and wildland fire management decision support systems research. Curr For Rep 1(2):128–137

    Google Scholar 

  • Matson M, Dozier J (1981) Identification of subresolution high temperature sources using a thermal IR sensor. Photogramm Eng Remote Sens 47(9):1311–1318

    Google Scholar 

  • Mazzeo G, Marchese F, Filizzola C, Pergola N, Tramutoli V (2007) A multi-temporal robust satellite technique (RST) for forest fire detection. In: Proceedings of the international workshop on the analysis of multi-temporal remote sensing images. IEEE, Piscataway. Doi: 10.1109/MULTITEMP.2007.4293060

  • Meng Y, Deng Y, Shi P (2015) Mapping forest wildfire risk of the world. In: Shi PJ, Kasperson R (eds) World atlas of natural disaster risk. Springer, Berlin, pp 261–275

    Google Scholar 

  • Merino L, Caballero F, Martrial de Dios R, Maza I, Ollero A (2012) An unmanned aircraft system for automatic forest fire monitoring and measurement. J Intell Robot Syst 65(1):533–548

    Article  Google Scholar 

  • Oliva P, Schroeder W (2015) Assessment of VIIRS 375 m active fire detection product for direct burned area mapping. Remote Sens Environ 160:144–155

    Article  Google Scholar 

  • Ollero A, Merino L (2006) Unmanned aerial vehicles as tools for forest-fire fighting. For Ecol Manag 234(1):S263

    Article  Google Scholar 

  • Peterson D, Wang J, Ichoku C, Hyer E, Ambrosia V (2013) A sub-pixel-based calculation of fire radiative power from MODIS observations: 1: algorithm development and initial assessment. Remote Sens Environ 129:262–279

    Article  Google Scholar 

  • Pozo D, Olrno FJ, Alados-Arboledas L (1997) Fire detection and growth monitoring using a multitemporal technique on AVHRR mid-infrared and thermal channels. Remote Sens Environ 60(2):111–120

    Article  Google Scholar 

  • Pu RL, Gong P, Li ZS, Scarborough J (2004) A dynamic algorithm for wildfire mapping with NOAA/AVHRR data. Int J Wildland Fire 13(3):275–285

    Article  Google Scholar 

  • Qu JJ, Wang W, Dasgupta S, Hao X (2008) Active fire monitoring and fire danger potential detection from space: a review. Front Earth Sci in Chin 2(4):479–486

    Article  Google Scholar 

  • Roberts GJ, Wooster MJ (2008) Fire detection and fire characterization over Africa using Meteosat SEVIRI. IEEE Trans Geosci Remote 46(4):1200–1218

    Article  Google Scholar 

  • Roberts G, Wooster MJ (2014) Development of a multi-temporal Kalman filter approach to geostationary active fire detection & fire radiative power (FRP) estimation. Remote Sens Environ 152:392–412

    Article  Google Scholar 

  • Roy DP, Boschetti L, Justice CO, Ju J (2008) The collection 5 MODIS burned area product—global evaluation by comparison with the MODIS active fire product. Remote Sens Environ 112:3690–3707

    Article  Google Scholar 

  • Sahin YG, Ince T (2009) Early forest fire detection using radio-acoustic sounding system. Sensors 9(3):1485–1498

    Article  PubMed  PubMed Central  Google Scholar 

  • San-Miguel-Ayanz J, Ravail N (2005) Active fire detection for fire emergency management: potential and limitations for the operational use of remote sensing. Nat Hazards 35(3):361–376

    Article  Google Scholar 

  • Schroeder W, Prins E, Giglio L, Csiszar I, Schmidt C, Morisette JT, Morton D (2008) Validation of GOES and MODIS active fire detection products using ASTER and ETM+ data. Remote Sens Environ 112:2711–2726

    Article  Google Scholar 

  • Schroeder W, Oliva P, Giglio L, Csiszar IA (2014) The New VIIRS 375 m active fire detection data product: algorithm description and initial assessment. Remote Sens Environ 143:85–96

    Article  Google Scholar 

  • Schroeder W, Oliva P, Giglio L, Quayle B, Lorenz E, Morelli F (2016) Active fire detection using Landsat-8/OLI data. Remote Sens Environ 185:210–220

    Article  Google Scholar 

  • Setzer AW, Pereira MC (1991) Amazonian biomass burnings in 1987 and an estimate of their tropospheric emission. Ambio 20(1):19–22

    Google Scholar 

  • Shao GF (2015) Optical remote sensing. In: Richardson D (ed) The international encyclopedia of geography: people, the earth, environment, and technology, 2nd edn. Wiley, Chichester, pp 2390–2395

    Google Scholar 

  • Tang LN, Shao GF (2015) Drone remote sensing for forestry research and practices. J For Res 26(4):791–797

    Article  Google Scholar 

  • Urbanski SP, Salmon JM, Nordgren BL, Hao WM (2009) A MODIS direct broadcast algorithm for mapping wildfire burned area in the western United States. Remote Sens Environ 113(11):2511–2526

    Article  Google Scholar 

  • Vadrevu KP, Lasko K, Giglio L, Justice C (2015) Vegetation fires, absorbing aerosols and smoke plume characteristics in diverse biomass burning regions of Asia. Environ Res Lett 10:105003

    Article  Google Scholar 

  • Wang W, Qu JJ, Hao X, Liu Y, Sommers WT (2007) An improved algorithm for small and cool fire detection using MODIS data: a preliminary study in the southeastern United States. Remote Sens Environ 108(2):163–170

    Article  Google Scholar 

  • Wang W, Qu JJ, Hao X, Liu Y (2009) Analysis of the moderate resolution imaging spectroradiometer contextual algorithm for small fire detection. J Appl Remote Sens 3(1):117–124

    CAS  Google Scholar 

  • Weaver JF, Purdom JFW, Schneider TL (1995) Observing forest fires with the GOES-8, 3.9-μm imaging channel. Weather Forecast 10(4):803–808

    Article  Google Scholar 

  • Yuan C, Zhang YM, Liu ZX (2015) A survey on technologies for automatic forest fire monitoring, detection, and fighting using unmanned aerial vehicles and remote sensing techniques. Can J For Res 45(7):783–792

    Article  Google Scholar 

  • Zhou XC, Wang XQ, Xiang TL, Jiang H (2006) Validation analysis of the algorithm for identifying forest fire based on MODIS data. Fire Saf Sci 15(1):31–37 (In Chinese)

    CAS  Google Scholar 

  • Zhukov B, Lorenz E, Oertel D, Wooster M, Roberts G (2006) Spaceborne detection and characterization of fires during the bi-spectral infrared detection (BIRD) experimental small satellite mission (2001–2004). Remote Sens Environ 100(1):29–51

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guofan Shao.

Additional information

Project funding

This research was financially supported by The National Natural Science Foundation of China [41471366] and The McIntire-Stennis Cooperative Forestry Research Program.

The online version is available at http://www.springerlink.com

Corresponding editor: Chai Ruihai

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, L., Shao, G. The progress of operational forest fire monitoring with infrared remote sensing. J. For. Res. 28, 215–229 (2017). https://doi.org/10.1007/s11676-016-0361-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-016-0361-8

Keywords

Navigation