Skip to main content
Log in

Genetic diversity in two threatened species in Vietnam: Taxus chinensis and Taxus wallichiana

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Taxus chinensis and T. wallichiana in have been threatened in their distribution areas in recent decades because of their over-exploitation and reduction and destruction of native habitats. Determining the genetic diversity in populations of the two species will provide guidelines for their protection and preservation. Two hundred and fifteen trees from six populations of T. chinensis and 150 sampled trees of T. wallichiana were sampled. Six microsatellite primer pairs selected from 16 primer pairs were used to investigate genetic variation at the population and species levels. Five yielded polymorphic alleles, and among the 13 putative alleles amplified, 11 were polymorphic (accounting for 76.33 %).Shannon’s information index (I) and percentage of polymorphic bands (PPB) (I = 0.202 and PPB = 67.22 % for T. chinensis; I = 0.217 and PPB = 65.03 % for T. wallichiana). Both species had low levels of genetic diversity (mean H o = 0.107, H e = 0.121 for T. chinensis; H o = 0.095, H e = 0.109 for T. wallichiana). Genetic differentiation among populations was higher (F ST = 0.189) for T. chinensis and lower (0.156) for T. wallichiana, indicating limited gene flow (Nm) among populations for T. chinensis (0.68) and T. wallichiana (0.65). Variation among individuals of T. chinensis was 63.59 and 73.12 % for T. wallichiana. Thus, the threatened status of the two conifers is related to a lack of genetic diversity. All populations are isolated in small forest remnants. An ex situ conservation site should be established with a new population for these species that comprises all the genetic groups for the best chance to improve their fitness under environmental stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aquirre Planter E, Furnier GR, Eguiarte LE (2000) Low levels genetic variation within and high levels of genetic differentiation among populations of species of Abies from southern Mexico and Guatemala. Am J Bot 87:362–371

    Article  Google Scholar 

  • Barrett SCH, Kohn JR (1991) Genetic and evolutionary consequences of small population size in plants: implications for conservation. In: Falk DA, Holsinger KE (eds) Genetics and conservation of rare plants. Oxford University Press, Oxford, pp 3–30

    Google Scholar 

  • Boy J, Cherry M, Dayanandan S (2005) Microsatellite analysis reveals genetically distinct populations of red pine (Pinus resinosa, Pinaceae). Am J Bot 92:833–841

    Article  Google Scholar 

  • Cipriano J, Carvalho A, Fernandes C, Gaspar MJ (2013) Evaluation of genetic diversity of Portuguese Pinus sylvestris L. populations based on molecular data and inferences about the future use of this germplasm. J Genet 92:e41–e48

    CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JJ (1990) Isolation of plant DNA from fresh tissue. Pocus 12:13–15

    Google Scholar 

  • Dubreuil M, Sebastiani F, Mayol M, Gonza´lez-Martı´nez SC, Riba M, Vendramin GG (2008) Isolation and characterization of polymorphic nuclear microsatellite loci in Taxus baccata L. Conserv Genet 9:1665–1668

    Article  CAS  Google Scholar 

  • Earl DA, von-Holdt BM (2012) Structure Harvester: a website and program for visualizing structure output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Echt CS, May Marquardt P, Hseih M, Zahorchak R (1996) Characterization of microsatellite markers in eastern white pine. Genome 39:1102–1108

    Article  CAS  PubMed  Google Scholar 

  • Ellstrand NC, Elam RD (1993) Population genetic consequences of small population size: implication for plant conservation. Ann Rev Ecol Syst 24:217–242

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulaton study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin v. 3.1. an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50

    CAS  Google Scholar 

  • Farjon A, Page CN (1999) Conifers status survey and conservation action plans. IUCNISSC. Conifer Specialist Group IUCN, Cambridge

    Google Scholar 

  • Hiep NT, Loc PK, Luu NDT, Thomas T, Farjon A, Averyanov I, Regalado J (2004) Vietnam conifers. Conservation status review 2004. Fauna and Flora international, Vietnam Program, Hanoi, p 128

    Google Scholar 

  • Ho¨hn M, A´bra´n P, Vendramin (2005) Genetic analysis of Swiss stone pine populations (Pinus cembra L. subsp. cembra) from the Carpathians using chloroplast microsatellites. Acta Silvatica et Ligniensia Hungarica 1:39–47

    Google Scholar 

  • Huang CC, Chiang TY, Hsu TW (2008) Isolation and characterization of microsatellite loci in Taxus sumatrana (Taxaceae) using PCR-based isolation of microsatellite arrays (PIMA). Conserv Genet 9:471–473

    Article  CAS  Google Scholar 

  • Karp A (1997) Molecular tools in plant genetic resources conservation: a guide to the technologies. Bioversity International, Rome

    Google Scholar 

  • Larionova AY, Ekart AK, Kravchenko AN (2007) Genetic diversity and population structure of Siberian fir (Abies sibirica LEDER.) in Middle Siberia, Russia. Eurasian J For Res 10:185–192

    Google Scholar 

  • Luu NDT, Thomas P (2004) Conifers of Vietnam. Agricultural Publishing, Hanoi

    Google Scholar 

  • Miao YC, Su JR, Zhang ZJ, Li H, Luo J, Zhang YP (2008) Isolation and characterization of microsatellite markers for the endangered Taxus yunnanensis. Conserv Genet 9:1683–1685

    Article  CAS  Google Scholar 

  • Miller MP (1997) Tools for population genetic analysis (TFPGA) 1.3: a windows program for the analysis of allozyme and molecular population genetic data

  • MOST, VAST (2007) Vietnam red data book, part II. plants. Natural Sciences and Technology, Hanoi

    Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am J Bot 72:1590–1597

    Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Phong DT, Lieu TT, Hien VTT, Hiep NT (2015) Genetic diversity of the endemic flat needle pine Pinus krempfii (Pinaceae) from Vietnam revealed by SSR markers. Genet Mol Res 14(3):7727–7739

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rubio Moraga A, CandelPerez D, LucasBorja ME, Tiscar PA (2012) Genetic diversity of Pinus nigra Arn. populations in southern Spain and northern Morocco revealed by inter-simple sequence repeat profiles. Int J Mol Sci 13:5645–5658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slatkin M (1985) Gene flow in natural populations. Ann Rev Ecol Syst 16:393–430

    Article  Google Scholar 

  • Smith DN, Devey ME (1994) Occurrence and inheritance of microsatellites in Pinus radiata. Genome 37:977–983

    Article  CAS  PubMed  Google Scholar 

  • Nguyen MT, Vu DD, Bui TTX, Nguyen MD (2013) Genetic variation and population structure in Chinese water pine (Glyptostrobus pensilis): a threatened species. Indian J Biotechnol 12(4):499–503

    Google Scholar 

  • Terrab A, Paun O, Talavera S, Tremetsberger K, Arista M, Stuessy TF (2006) Genetic diversity and population structure in natural populations of Moroccan Atlas cedar (Cedrus atlantica, Pinaceae) determined with cpSSR markers. Am J Bot 93:1274–1280

    Article  CAS  PubMed  Google Scholar 

  • Thomas P, Nguyen TH, Phan KL, Nguyen QH (2013) The IUCN Red List of Threatened Species. Version 2015.2. www.iucnredlist.org. Accessed 6 July 2015

  • Turner IM (2001) The ecology of trees in the tropical rain forest. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Van NK, Hien NT, Loc PK, Hiep NT (2000) Bioclimatic diagrams of Vietnam. National University Publishing House, Hanoi, p 124

    Google Scholar 

  • Vendramin GG, Lelli L, Rossi P, Morgante M (1996) A set of primers for the amplification of 20 chloplast microsatellites in Pinaceae. Mol Ecol 5:595–598

    Article  CAS  PubMed  Google Scholar 

  • Vendramin GG, Anzidei M, Madaghiele A, Bucci C (1998) Distribution of genetic diversity in Pinus pinaster Ait. as revealed by chloroplast microsatellites. Theor Appl Genet 97:456–463

    Article  CAS  Google Scholar 

  • Xue H, Lu CH, Wu XB (2012) Development and characterization of microsatellite markers for the endangered Chinese yew Taxus chinensis var. mairei (Taxaceae). Genet Mol Res 11(2):1296–1299

    Article  CAS  PubMed  Google Scholar 

  • Yang JB, Li HT, Li DZ, Liu J, Gao L-M (2009) Isolation and characterization of microsatellite markers in the endangered species Taxus wallichiana using the FIASCO method. HortScience 44(7):2043–2045

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohua Huang.

Additional information

Project funding: This work was supported by a research project (No. Z111021402) of Northwest A&F University and by the Ministry of Natural Resources and Environment, Vietnam government, Hanoiand IDEA WILD equipment to Vu Dinh Duy, Bui Thi Tuyet Xuan.

The online version is available at http://www.springerlink.com

Corresponding Editor: Yu Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vu, D.D., Bui, T.T.X., Nguyen, M.T. et al. Genetic diversity in two threatened species in Vietnam: Taxus chinensis and Taxus wallichiana . J. For. Res. 28, 265–272 (2017). https://doi.org/10.1007/s11676-016-0323-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-016-0323-1

Keywords

Navigation