Skip to main content
Log in

Distribution changes of woody plants in Western Iran as monitored by remote sensing and geographical information system: a case study of Zagros forest

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

The status of woody plants in dry-land systems is a fundamental determinant of key ecosystem processes. Monitoring of this status plays an important role in understanding the dynamics of woody plants in arid and semi-arid ecosystems. The present study determined the dynamism of the Zagros forests in Iran using Remote Sensing and Geographic Information System techniques and statistical science. The results show that the density of trees varied from 10 to 53 % according to the physiographic and climatic conditions of semi-arid regions. The best and lowest correlation between vegetation indices and forest density were obtained for the global environmental monitoring index (GEMI; R 2 = 0.94) and soil adjust vegetation index (R 2 = 0.81), respectively. GEMI is used to monitor land use changes over a 10-year period. Results show that 2720 ha2 of forest have been destroyed by human interference and tillage on steep slopes during this period which also resulted in the loss of the fertile soil layer. GEMI determined the areas with a biomass of trees and could normally separate border regions with low biomass density of trees from regions without canopy cover. The results revealed that assessment of forest and vegetation cover in arid and semi-arid arduous forest regions using satellite digital numbers and ordinary sampling is subject to uncertainty. A stratified grouping procedure should be established to increase the accuracy of assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adina T, Anne C, Birgit K, Michael F (2014) Estimation of the seasonal leaf area index in an alluvial forest using high-resolution satellite-based vegetation indices. Remote Sens Environ 141:52–63

    Article  Google Scholar 

  • Ahmed OS, Franklin SE, Wulder MA, White JC (2015) Characterizing stand-level forest canopy cover and height using landsat time series, samples of airborne LiDAR, and the random forest algorithm. ISPRSJ Photogramm Remote Sens 101:89–101

    Article  Google Scholar 

  • Austin AT, Vivanco L (2006) Plant litter decomposition in a semi-arid ecosystem controlled by photo degradation. Nature 442(7102):555–558

    Article  CAS  PubMed  Google Scholar 

  • Bailey HP (1979) Semi-arid climates: their definition and distribution. Agriculture in semi-arid environments. Springer, Berlin, pp 73–97

    Chapter  Google Scholar 

  • Beadle NCW (1959) Some aspects of ecological research in semi-arid Australia. Biogeography and Ecology in Australia. Springer, Dordrecht, pp 452–460

    Chapter  Google Scholar 

  • Béland M, Baldocchi DD, Widlowski JL, Fournier RA, Verstraete MM (2014) On seeing the wood from the leaves and the role of voxel size in determining leaf area distribution of forests with terrestrial LiDAR. Agric For Meteorol 184:82–97

    Article  Google Scholar 

  • Bradley BA, Mustard JF (2008) Comparisons of phenology trends by land cover class: a case study in the Great Basin, USA. Glob Chang Biol 14:334–346

    Article  Google Scholar 

  • Brandt JS, Kuemmerle T, Li H, Ren G, Zhu J, Radeloff VC (2012) Using Landsat imagery to map forest change in southwest China in response to the national logging ban and ecotourism development. Remote Sens Environ 121:358–369

    Article  Google Scholar 

  • Brantley ST, Zinnert JC, Young DR (2011) Application of hyperspectral vegetation indices to detect variations in high leaf area index temperate shrub thicket canopies. Remote Sens Environ 115(2):514–523

    Article  Google Scholar 

  • Breshears D (2006) The grassland–forest continuum: trends in ecosystem properties for woody plant mosaics? Front Ecol Environ 4:96–104

    Article  Google Scholar 

  • Chaban LN. 2004. Theory and algorithms pattern recognition. Moscow State University of Geodesy and Cartography, in (Russian)

  • Chen JM, Black TA (1991) Measuring leaf area index of plant canopies with branch architecture. Agric For Meteorol 57:1–12

    Article  Google Scholar 

  • Chen JM, Cihlar J (1996) Retrieving leaf area index of boreal conifer forests using Landsat TM images. Remote Sens Environ 55:153–162

    Article  Google Scholar 

  • Cohen WB, Maiersperger TK, Gower ST, Turner DP (2003) An improved strategy for regression of biophysical variables and Landsat ETM + data. Remote Sens Environ 84:561–571

    Article  Google Scholar 

  • Colombo R, Bellingeri D, Fasolini D, Marino CM (2003) Retrieval of leaf area index in different vegetation types using high resolution satellite data. Remote Sens Environ 86(1):120–131

    Article  Google Scholar 

  • Coppin P, Jonckheere I, Nackaerts K, Muys B, Lambin E (2004) Digital change detection methods in ecosystem monitoring: a review. Int J Remote Sens 25(9):1565–1596

    Article  Google Scholar 

  • Crippen RE (1990) Calculating the vegetation index faster. Remote Sens Environ 34:71–73

    Article  Google Scholar 

  • Datt B (1999) A new reflectance index for remote sensing of chlorophyll content in higher plants: tests using Eucalyptus leaves. J Plant Physiol 154:30–36

    Article  CAS  Google Scholar 

  • Diouf A, Lambin EF (2001) Monitoring land-cover changes in semi-arid regions: remote sensing data and field observations in the Ferlo, Senegal. J Arid Environ 48(2):129–148

    Article  Google Scholar 

  • Ferreira MP, Alves DS, Shimabukuro YE (2015) Forest dynamics and land-use transitions in the Brazilian Atlantic Forest: the case of sugarcane expansion. Reg Environ Chang 15(2):365–377

    Article  Google Scholar 

  • Franklin SE (2001) Remote sensing for sustainable forest management. CRC, Boca Raton

    Book  Google Scholar 

  • Galvao LS, dos Santos JR, Roberts DA, Breunig FM, Toomey M, de Moura YM (2011) On intra-annual EVI variability in the dry season of tropical forest: a case study with MODIS and hyperspectral data. Remote Sens Environ 115(9):2350–2359

    Article  Google Scholar 

  • Ghanbari S, Sefidi K (2012) Comparison of sustainable forest management (SFM) trends at global and country levels: case study in Iran. J For Res 23(2):311–317

    Article  Google Scholar 

  • Griffiths P, Kuemmerle T, Baumann M, Radeloff VC, Abrudan IV, Lieskovsky J, Hostert P (2014) Forest disturbances, forest recovery, and changes in forest types across the Carpathian ecoregion from 1985 to 2010 based on Landsat image composites. Remote Sens Environ 151:72–88

    Article  Google Scholar 

  • Heisler-White JL, Knapp AK, Kelly EF (2008) Increasing precipitation event size increases aboveground net primary productivity in a semi-arid grassland. Oecologia 158(1):129–140

    Article  PubMed  Google Scholar 

  • Henareh Khalyani A, Falkowski MJ, Mayer AL (2012) Classification of landsat images based on spectral and topographic variables for land-cover change detection in Zagros forests. Int J Remote Sens 33(21):6956–6974

    Article  Google Scholar 

  • Henareh Khalyani J, Namiranian M, Heshmatol Vaezin SM, Feghhi J (2014) Development and evaluation of local communities incentive programs for improving the traditional forest management: a case study of Northern Zagros forests, Iran. J For Res 25(1):205–210

    Article  Google Scholar 

  • Heumann BW, Seaquist JW, Eklundh L, Jonsson P (2007) AVHRR derived phenological change in the Sahel and Soudan, Africa, 1982–2005. Remote Sens Environ 108:385–392

    Article  Google Scholar 

  • Homet-Gutiérrez P, Schupp EW, Gómez JM (2015) Naturalization of almond trees (Prunus dulcis) in semi-arid regions of the Western Mediterranean. J Arid Environ 113:108–113

    Article  Google Scholar 

  • Hostert P, Röder A, Hill J (2003) Coupling spectral unmixing and trend analysis for monitoring of long-term vegetation dynamics in Mediterranean rangelands. Remote Sens Environ 87:183–197

    Article  Google Scholar 

  • Huang CQ, Goward SN, Schleeweis K, Thomas N, Masek JG, Zhu ZL (2009) Dynamics of national forests assessed using the Landsat record: case studies in eastern United States. Remote Sens Environ 113:1430–1442

    Article  Google Scholar 

  • Huete AR (1988) A Soil-Adjusted Vegetation Index (SAVI). Remote Sens Environ 25(3):295–309

    Article  Google Scholar 

  • Jian Y, Peter J, Nathan A (2012) Landsat remote sensing approaches for monitoring long-term tree cover dynamics in semi-arid woodlands: comparison of vegetation indices and spectral mixture analysis. Remote Sens Environ 119:62–71

    Article  Google Scholar 

  • Ko D, Bristow N, Greenwood D, Weisberg P (2009) Canopy cover estimation in semiarid woodlands: comparison of field-based and remote sensing methods. For Sci 55:132–141

    Google Scholar 

  • Lal R (2004) Carbon sequestration in dryland ecosystems. Environ Manag 33:528–544

    Article  Google Scholar 

  • Lanorte A, Lasaponara R, Lovallo M, Telesca L (2014) Fisher-Shannon information plane analysis of SPOT/VEGETATION Normalized Difference Vegetation Index (NDVI) time series to characterize vegetation recovery after fire disturbance. Int J Appl Earth Obs Geoinform 26:441–446

    Article  Google Scholar 

  • Le Maire G, Marsden C, Nouvellon Y, Grinand C, Hakamada R, Stape JL, Laclau JP (2011) MODIS NDVI time-series allow the monitoring of eucalyptus plantation biomass. Remote Sens Environ 115(10):2613–2625

    Article  Google Scholar 

  • Letnic M, Laffan SW, Greenville AC, Russell BG, Mitchell B, Fleming PJ (2015) Artificial watering points are focal points for activity by an invasive herbivore but not native herbivores in conservation reserves in arid Australia. Biodivers Conserv 24(1):1–16

    Article  Google Scholar 

  • Lillesand TM, Kiefer RW (1994) Remote Sensing and Image Interpretation. Wiley, New York, p 750

    Google Scholar 

  • Macleod RD, Congalton RG (1998) A quantitative comparison of change-detection algorithms for monitoring eelgrass from remotely sensed data. Photogramm Eng Remote Sens 64(3):207–216

    Google Scholar 

  • Mashayekhi Z, Panahi M, Karami M, Khalighi S, Malekian A (2010) Economic valuation of water storage function of forest ecosystems (case study: Zagros Forests, Iran). J For Res 21(3):293–300

    Article  Google Scholar 

  • Moosavi V, Vafakhah M, Shirmohammadi B, Behnia N (2013) A wavelet-ANFIS hybrid model for groundwater level forecasting for different prediction periods. Water Resour Manag 27(5):1301–1321

    Article  Google Scholar 

  • Mutanga O, Skidmore AK (2004) Narrow band vegetation indices overcome the saturation problem in biomass estimation. Int J Remote Sens 25(19):3999–4014

    Article  Google Scholar 

  • Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386(6626):698–702

    Article  CAS  Google Scholar 

  • Paruelo JM, Sala OE, Beltrán AB (2000) Long-term dynamics of water and carbon in semi-arid ecosystems: a gradient analysis in the Patagonian steppe. Plant Ecol 150(1–2):133–143

    Article  Google Scholar 

  • Peters AJ, Walter-Shea EA, Ji L, Vina A, Hayes M, Svoboda MD (2002) Drought monitoring with NDVI-based standardized vegetation index. Photogramm Eng Remote Sens 68(1):71–75

    Google Scholar 

  • Pinty B, Verstraete MM (1992) GEMI: a non-linear index to monitor global vegetation from satellites. Vegetation 101(1):15–20

    Article  Google Scholar 

  • Potithep S, Nagai S, Nasahara KN, Muraoka H, Suzuki R (2013) Two separate periods of the LAI–VIs relationships using in situ measurements in a deciduous broadleaf forest. Agric For Meteorol 169:148–155

    Article  Google Scholar 

  • Pourhashemi M, Marvi Mohajer MR, Zobeiri M, Amiri GZ, Panahi P (2004) Identification of forest vegetation units in support of government management objectives in Zagros forests, Iran. Scand J For Res 19(S4):72–77

    Article  Google Scholar 

  • Qi J, Chehbouni A, Huete AR, Kerr YH, Sorooshian S (1994) A modified soil adjusted vegetation index. Remote Sens Environ 48(2):119–126

    Article  Google Scholar 

  • Rahmati O, Pourghasemi HR, Melesse AM (2016) Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: a case study at Mehran Region, Iran. CATENA 137:360–372

    Article  Google Scholar 

  • Richards JA (1993) An introduction to remote sensing digital image analysis, 2nd edn. Springer, New York, p 225

    Book  Google Scholar 

  • Riha KM, Michalski G, Gallo EL, Lohse KA, Brooks P, Meixner T (2014) High atmospheric nitrate inputs and nitrogen turnover in semi-arid urban catchments. Ecosystems 17(8):1309–1325

    Article  CAS  Google Scholar 

  • Roni R (2013) Surface temperature and NDVI generation and relation between them: application of remote sensing. Asian J Eng Technol Innov 1(1):08–13

    Google Scholar 

  • Rotenberg E, Yakir D (2010) Contribution of semi-arid forests to the climate system. Science 327(5964):451–454

    Article  CAS  PubMed  Google Scholar 

  • Rouse J 1974 Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation NASA/GSFC Type III Final Report, Greenbelt, MD, 371p

  • Sadeghravesh MH, Khosravi H, Ghasemian S (2015) Application of fuzzy analytical hierarchy process for assessment of combating-desertification alternatives in central Iran. Nat Hazards 75(1):653–667

    Article  Google Scholar 

  • Saranya KRL, Reddy CS, Rao PP, Jha CS (2014) Decadal time-scale monitoring of forest fires in Similipal Biosphere Reserve, India using remote sensing and GIS. Environ Monit Assess 186(5):3283–3296

    Article  CAS  PubMed  Google Scholar 

  • Schmidt M, Lucas R, Bunting P, Verbesselt J, Armston J (2015) Multi-resolution time series imagery for forest disturbance and regrowth monitoring in Queensland, Australia. Remote Sens Environ 158:156–168

    Article  Google Scholar 

  • Sexton JO, Song XP, Feng M, Noojipady P, Anand A, Huang C, Townshend JR (2013) Global, 30-m resolution continuous fields of tree cover: landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. Int J Digit Earth 6(5):427–448

    Article  Google Scholar 

  • Shirmohammadi B, Vafakhah M, Moosavi V, Moghaddamnia A (2013) Application of several data-driven techniques for predicting groundwater level. Water Resour Manag 27(2):419–432

    Article  Google Scholar 

  • Singh A (1989) Review article digital change detection techniques using remotely-sensed data. Int J Remote Sens 10(6):989–1003

    Article  Google Scholar 

  • Slayback DA, Pinzon JE, Los SO, Tucker CJ (2003) Northern hemisphere photosynthetic trends 1982–99. Glob Chang Biol 9:1–15

    Article  Google Scholar 

  • Starr G, Staudhammer CL, Loescher HW, Mitchell R, Whelan A, Hiers JK, O’Brien JJ (2015) Time series analysis of forest carbon dynamics: recovery of Pinus palustris physiology following a prescribed fire. New For 46(1):63–90

    Article  Google Scholar 

  • Sulla-Menashe D, Kennedy RE, Yang Z, Braaten J, Krankina ON, Friedl MA (2014) Detecting forest disturbance in the Pacific Northwest from MODIS time series using temporal segmentation. Remote Sens Environ 151:114–123

    Article  Google Scholar 

  • Tang H, Brolly M, Zhao F, Strahler AH, Schaaf CL, Ganguly S, Dubayah R (2014) Deriving and validating Leaf Area Index (LAI) at multiple spatial scales through lidar remote sensing: a case study in Sierra National Forest, CA. Remote Sens Environ 143:131–141

    Article  Google Scholar 

  • Thenkabail PS, Lyon JG, Huete A (2016) Hyperspectral remote sensing of vegetation. CRC Press

  • Torahi AA, Rai SC (2011) Land cover classification and forest change analysis, using satellite imagery-a case study in Dehdez area of Zagros mountain in Iran. J Geogr Inf Syst 3(01):1

    Google Scholar 

  • Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8:127–150

    Article  Google Scholar 

  • Walker BH (2012) Management of semi-arid ecosystems. Elsevier, Amsterdam

    Google Scholar 

  • Walker JJ, De Beurs KM, Wynne RH, Gao F (2012) Evaluation of Landsat and MODIS data fusion products for analysis of dryland forest phenology. Remote Sens Environ 117:381–393

    Article  Google Scholar 

  • Zehtabian G, Khosravi H, Ghodsi M (2010) High demand in a land of water scarcity: Iran. Water and Sustainability in Arid Regions. Springer, Dordrecht, pp 75–86

    Chapter  Google Scholar 

  • Zehtabian G, Khosravi H, Masoodi R (2014) Desertification assessment models (Criteria and indicators). University of Tehran Press, Iran (In Farsi), Tehran

    Google Scholar 

  • Zhu Z, Woodcock CE, Olofsson P (2012) Continuous monitoring of forest disturbance using all available Landsat imagery. Remote Sens Environ 122:75–91

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Rahdari.

Additional information

The online version is available at http://www.springerlink.com

Corresponding editor: Yu Lei

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karkon Varnosfaderani, M., Kharazmi, R., Nazari Samani, A. et al. Distribution changes of woody plants in Western Iran as monitored by remote sensing and geographical information system: a case study of Zagros forest. J. For. Res. 28, 145–153 (2017). https://doi.org/10.1007/s11676-016-0295-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-016-0295-1

Keywords

Navigation