Skip to main content
Log in

Communities of saprobic fungi on leaf litter of Vismia guianensis in remnants of the Brazilian Atlantic Forest

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

We examined the mycobiota associated with Vismia guianensis leaf litter in three Atlantic Forest remnants of Brazil’s semiarid region. Among the study sites, two remnants were protected forest reserves, whereas the third was influenced by major anthropogenic activities. Eighteen litter samples were collected in wet and dry seasons and were processed by particle filtration technique. A total of 4750 fungal isolates of 142 taxa were identified. Species richness was higher in litter samples collected during wet season. Nonmetric multidimensional scaling multivariate analysis showed differences in the composition of fungal communities among the sampling sites and the seasons. Analysis of similarity showed that the differences were statistically significant (R = 0.85; P = 0.0001). Our findings revealed that spatial and temporal heterogeneity, and human activities had significant impacts on the saprobic fungi of V. guianensis leaf litter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allegrucci N, Bucsinszkya AM, Arturib M, Cabello MN (2014) Communities of anamorphic fungi on green leaves and leaf litter of native forests of Scutia buxifolia and Celtis tala —Composition, diversity, seasonality and substrate specificity. Rev Iberoam Micol 32(2):71–78

    Article  PubMed  Google Scholar 

  • Allison SD, Hanson CA, Treseder KK (2007) Nitrogen fertilization reduces diversity and alters community structure of active fungi in boreal ecosystems. Soil Biol Biochem 39(8):1878–1887

    Article  CAS  Google Scholar 

  • Amorim AM, Jardim JG, Clifton BC, Fiaschi P, Thomas WW, Carvalho AMV (2005) The vascular plants of a forest fragment in southern Bahia, Brazil. Sida Contrib Bot 21:1727–1752

    Google Scholar 

  • Andrade-Lima D (1982) Present-day forest refuges in Northeastern Brazil. In: Prance GT (ed) Biological diversification in the tropics. Columbia University Press, New York, pp 245–251

    Google Scholar 

  • Bills GF, Polishook JD (1994) Abundance and diversity of microfungi in leaf litter of a lowland rain forest in Costa Rica. Mycologia 86:187–198

    Article  Google Scholar 

  • Bittrich V (2010) Hypericaceae in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. http://reflora.jbrj.gov.br/jabot/floradobrasil/FB25586. Accessed 26 Apr 2014

  • Brown N, Shonil B, Watkinson S (2006) Macrofungal diversity in fragmented and disturbed forests of the Western Ghats of India. J Appl Ecol 43:11–17

    Article  Google Scholar 

  • Buell CB, Weston WH (1947) Application of the mineral oil conservation method to maintaining collections fungus cultures. Am J Bot 34:555–561

    Article  Google Scholar 

  • Cannon PF, Sutton BC (2004) Microfungi on wood and plant debris. In: Foster MS, Bills GF, Mueller GM (eds) Biodiversity of fungi: inventory and monitoring methods. Elsevier, Amsterdam, pp 217–239

    Chapter  Google Scholar 

  • Carrenho R, Gomes-Costa SM (2011) Environmental degradation impact on an urban fragment of a subdeciduous plateau forest on native communities of arbuscular mycorrhizal fungi. Acta Bot Bras 25(2):376–379

    Article  Google Scholar 

  • Castellani A (1967) Maintenance and cultivation of the common pathogenic fungal in sterile distilled water, for the researches. J Trop Med Hyg 70:181–184

    Google Scholar 

  • Cetra M, Barrella W, Langeani-Neto F, Martins AG, Mello BJ, Almeida RS (2012) Fish fauna of headwater streams that cross the Atlantic Forest of south São Paulo state. Check List 8(3):421–425

    Article  Google Scholar 

  • Chao A (1987) Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43(4):783–791

    Article  CAS  PubMed  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analysis of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  • Collado J, Platas G, Paulus B, Bills G (2007) High-throughput culturing of fungi from plant litter by a dilution-to-extinction technique. FEMS Microbiol Ecol 60:521–533

    Article  CAS  PubMed  Google Scholar 

  • Feinstein LM, Blackwood CB (2013) The spatial scaling of saprotrophic fungal beta diversity in decomposing leaves. Mol Ecol 22:1171–1184

    Article  CAS  PubMed  Google Scholar 

  • Grünwald NJ, Goodwin SB, Milgroom MG, Fry WE (2003) Analysis of genotypic diversity data for populations of microorganisms. Anal Theor Plant Pathol 93(6):738–746

    Google Scholar 

  • Hammer O, Harper DAT, Ryan PD (2013) Paleontological statistics, 1.34 v. http://www.folk.uio.no/ohammer/past. Accessed 23 Jan 2014

  • Handa T, Aerts R, Berendse F (2014) Consequences of biodiversity loss for litter decomposition across biomes. Nature 509:218–221

    Article  CAS  PubMed  Google Scholar 

  • Hättenschwiller S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Ann Rev Ecol Evol Syst 36:191–218

    Article  Google Scholar 

  • Hättenschwiller S, Fromin N, Barantal S (2011) Functional diversity of terrestrial microbial decomposers and their substrates. C R Biol 334:393–402

    Article  Google Scholar 

  • Ho YWH, Hyde KD (2001) Fungal communities on decaying palm fronds in Australia, Brunei and Hong Kong. Mycol Res 105(12):1458–1471

    Article  Google Scholar 

  • Hyde KD, Bussaban B, Paulus B, Crous PW, Lee S, Mckenzie EHC, Photita W, Lumyong S (2007) Diversity of saprobic microfungi. Biodivers Conserv 16:7–35

    Article  Google Scholar 

  • Kodsueb R, Mckenzie EHC, Lumyong S, Hyde KD (2008) Diversity of saprobic fungi on Magnoliaceae. Fungal Divers 30:37–53

    Google Scholar 

  • Kruskall JB (1964) Nonmetric multidimensional scaling: a numerical method. Psychometrika 29:115–129

    Article  Google Scholar 

  • Kumar R, Tapwal A, Baruah DM (2012) Leaf litter decomposition pattern in Dipterocarpus tuberculatus and Dipterocarpus retusus forests of North East India. Res J For 6:24–31

    Google Scholar 

  • Lacap DC, Hyde KD, Liew ECY (2003) An evaluation of the fungal ‘morphotype’ concept based on ribosomal DNA sequences. Fungal Divers 12:53–66

    Google Scholar 

  • Lodge DJ (1997) Factors related to diversity of decomposer fungi in tropical forests. Biodivers Conserv 6:681–688

    Article  Google Scholar 

  • Lodge DJ, Cantrell S (1995) Fungal communities in wet tropical forests: variation on time and space. Can J Bot 73:1391–1398

    Article  Google Scholar 

  • Magurran AE (1988) Ecological diversity and its measurement. Princeton University Press, Princeton, p 177

    Book  Google Scholar 

  • Marques MFO, Gusmão LFP, Maia LC (2008) Riqueza de espécies de fungos conidiais em duas áreas de mata atlântica no Morro da Pioneira, Serra da Jibóia, BA, Brasil. Acta Bot Bras 22:954–961

    Article  Google Scholar 

  • McAleece N (1997) Biodiversity Profesional Beta I. The Natural History Museum & The Scottish Association for Marine Science, London

    Google Scholar 

  • Mittermeier R, Gil PR, Hoffmann M, Pilgrim JD, Brooks T, Mittermeier CG, Fonseca GAB (2005) Hotspots revisited: earth’s 7 biologically richest and most endangered ecoregions. CEMEX & Agrupacion Sierra Madre, Mexico City, p 640

    Google Scholar 

  • Monkai J, Promputtha I, Kodsueb R, Chukeatirote E, McKenzie EHC, Hyde KD (2013) Fungi on decaying leaves of Magnolia liliifera and Cinnamomuminers show litter fungi to be hyperdiverse. Mycosphere 4(2):292–301

    Article  Google Scholar 

  • Muthukrishan S, Sanjayan KP, Jahir HK (2012) Species composition, seasonal changes and community ordination of alkalotolerant micro fungal diversity in a natural scrub jungle ecosystem of Tamil Nadu, India. Mycosphere 3(2):92–109

    Article  Google Scholar 

  • Nascimento LD, Rodal MJN, Silva AG (2012) Florística de uma floresta estacional no Planalto da Borborema, nordeste do Brasil. Rodriguésia 63(2):429–440

    Article  Google Scholar 

  • Paulus BC, Gadek P, Hyde K (2003a) Estimation of microfungi diversity in tropical rainforest leaf litter using particle filtration: the effects of leaf storage and surface treatment. Mycol Res 107:748–756

    Article  PubMed  Google Scholar 

  • Paulus BC, Gadek P, Hyde KD (2003b) Two new species of Dactylaria (anamorphic fungi) from Australian rainforests and an update of species in Dactylaria sensu lato. Fungal Divers 14:143–156

    Google Scholar 

  • Paulus BC, Kanowski J, Gadek PA, Hyde KD (2006) Diversity and distribuition of saprobic microfungi in leaf litter of an Australian tropical rainforest. Mycol Res 110:1441–1454

    Article  PubMed  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/. Accessed 23 Jan 2014

  • Reis PCJ, Rocha WD, Falcão LDA, Guerra TJ, Neves FS (2013) Ant fauna on Cecropia pachystachya Trécul (Urticaceae) trees in an Atlantic Forest area, southeastern Brazil. Sociobiology 60(3):222–228

    Article  Google Scholar 

  • Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153

    Article  Google Scholar 

  • Saikia P, Joshi SR (2012) Changes in microfungal community in Cherrapunji—The Wettest Patch on Earth as influenced by heavy rain and soil degradation. Adv Microbiol 2(4):456–464

    Article  Google Scholar 

  • Santana MS, Lodge DJ, Lebow P (2005) Relationship of host recurrence in fungi to rates of tropical leaf decomposition. Pedobiology 49:549–564

    Article  Google Scholar 

  • Santos FLA, Souza MJN (2012) Caracterização geoambiental do planalto cuestiforme da Ibiapaba, Ceará. Eixo temático—geomorfologia e cotidiano. Rev Geonorte 2(4):301–309

    Google Scholar 

  • Santos AMM, Cavalcanti DR, Silva JMC, Tabarelli M (2007) Biogeographical relationships among tropical forests in north-eastern Brazil. J Biogeogr 34:437–446

    Article  Google Scholar 

  • Seephueak P, Phongpaichit S, Hyde KD, Petcharat V (2011) Diversity of saprobic fungi on decaying branch litter of the rubber tree (Hevea brasiliensis). Mycosphere 2(4):307–330

    Google Scholar 

  • Sharma G, Pandey RR, Singh MS (2011) Microfungi associated with surface soil and decaying leaf litter of Quercus serrata in a subtropical natural oak forest and managed plantation in Northeastern India. Afr J Microbiol Res 5(7):777–787

    Article  Google Scholar 

  • Silva JMC, Casteleti CH (2003) Status of the biodiversity of the Atlantic Forest of Brazil. In: Galindo-Leal C, Câmara IG (eds) The Atlantic Forest of South America: biodiversity status, threats, and outlook. Island Press, Washington, pp 43–59

    Google Scholar 

  • SOS Mata Atlântica (2013) Mata Atlântica. http://www.sosmatatlantica.org.br. Accessed 20 May 2014

  • Tabarelli M, Mantovani W (1999) A riqueza de espécies arbóreas na floresta Atlântica de encosta no estado de São Paulo (Brasil). Rev Bras Bot 22:217–223

    Article  Google Scholar 

  • Tabarelli M, Santos AMM (2004) Uma breve descrição sobre a história natural dos brejosnordestinos. In: Porto KC, Cabral JJP, Tabarelli M (eds) Brejos de altitudes em Pernambuco e Paraíba: história natural, ecologia e conservação. Ministério do MeioAmbiente, Brasília, pp 17–24

    Google Scholar 

  • Tabarelli M, Melo MDVC, Lira OC (2006) A Mata Atlântica do Nordeste. In: Campanili M, Prochnow M (eds) Mata Atlânticaumarede pela Floresta. Rede de Ongs da Mata Atlântica, Brasília, pp 149–164

    Google Scholar 

  • Tabarelli M, Aguiar AV, Ribeiro MC, Metzger JP, Peres CA (2010) Prospects for biodiversity conservation in the Atlantic Forest—lessons from aging human-modified landscapes. Biol Conserv 143:2328–2340

    Article  Google Scholar 

  • Tomasoni MA, Santos SD (2003) Lágrimas da Serra: Os impactos das atividades agropecuárias sobre o geossistema da APA Municipal da Serra da Jibóia, no município de Elísio Medrado. Rio de Janeiro: X Simpósio Nacional de Geografia Física Aplicada, Ed. UFRJ, v.1. http://www.cibergeo.org/XSBGFA/eixo3/3.3/336/336.htm. Accessed 20 May 2014

  • Voříšková J, Baldrian P (2013) Fungal community on decomposing leaf litter undergoes rapid successional changes. Multidiscip J Microb Ecol 7(3):477–486

    Google Scholar 

Download references

Acknowledgments

We thank the Coordination of Improvement of Higher Education Personnel (CAPES) for the Doctoral scholarship (Program Postgraduate Botany/UEFS) granted to the first author. The authors thank Lucas Abreu and Ludwig Pfenning, Universidade Federal de Lavras, for help in identifying coelomycetes; to Cristina Motta, the URM Culture Collection, for the identification of the genera Penicillium and Aspergillus; Rafael Ruiz-Castañeda, of the Instituto de Investigaciones Fundamentales en Agriculture Tropical in Cuba, for help in identifying hyphomycetes; and biologists Carolina Azevedo, Carolina Ribeiro, Ithala Santana, Josiane Monteiro, Lara Almeida, Taiana Conceição and Tasciano Santa Izabel - for technical support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loise Araujo Costa.

Additional information

Project funding: This study was funded by the “Programa de Pesquisa em Biodiversidade—PPBio Semiárido”.

The online version is available at http://www.springerlink.com

Corresponding editor: Zhu Hong

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, L.A., Gusmão, L.F.P. Communities of saprobic fungi on leaf litter of Vismia guianensis in remnants of the Brazilian Atlantic Forest. J. For. Res. 28, 163–172 (2017). https://doi.org/10.1007/s11676-016-0268-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-016-0268-4

Keywords

Navigation