Advertisement

Journal of Forestry Research

, Volume 27, Issue 3, pp 595–603 | Cite as

Autoregressive spatial analysis and individual tree modeling as strategies for the management of Eremanthus erythropappus

  • Henrique Ferraço Scolforo
  • José Roberto Soares ScolforoEmail author
  • José Marcio de Mello
  • Antônio Carlos Ferraz Filho
  • Diogo Francisco Rossoni
  • Thiza Falqueto Altoé
  • Antônio Donizette Oliveira
  • Renato Ribeiro de Lima
ORIGINAL PAPER

Abstract

The objectives of this study were to apply statistical techniques to discriminate fertilization treatments of Eremanthus erythropappus (DC.) MacLeish. through autoregressive modeling, and to develop individual tree models for diameter and crown area (CA) projection to define management strategies for candeia plantations subjected to different fertilization treatments. This is an important tree species originating from the Brazilian Atlantic Rain forest and Savannah biomes, intensively used in the cosmetic industry. Nonetheless, to date, research has not addressed the management of natural stands or plantations of the species. Our experiment was located in Baependi, Minas Gerais, Brazil, and comprised of four randomized blocks and 13 treatments. The treatments consisted of 12 different regimes of fertilization plus a control. Each sample plot was composed of 50 plants plus two border plants in a planting spacing of 2.5 × 2.0 m and undergoing pruning at 5 and 6 years of age. Starting in the second year, total tree height (H) and circumference (at 1.30 m from the ground or breast height, CBH) were measured every 6 months. Starting in the fifth year CA was measured. Tree growth varied by fertilization strategy. Differences were detected by using an autoregressive approach, considering that standard statistical methods were not powerful enough to detect significant differences. Three growth groups were formed, and maximum growth was obtained for treatment 10 (NPK, 8-28-16). Management guidelines are provided based on individual tree models for different fertilization levels.

Keywords

Management strategies Candeia Fertilization level Brazil Crown area 

Notes

Acknowledgments

The authors are grateful to the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), the Instituto Estadual de Florestas (IEF), the Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA), Ministério do Meio Ambiente (MMA) and Citróleo® for supporting and/or partially funding this work.

References

  1. Assmann E (1970) The principles of forest yield study. Pergamon Press, OxfordGoogle Scholar
  2. Banzatto DA, Kronka SN (2006) Experimentação agrícola. Funep, JaboticabalGoogle Scholar
  3. Casanoves F, Baldessari J, Balzarini M (2005) Evaluation of multienvironmental trials of peanut (Arachis hypogaea L.) cultivars. Crop Sci 45:18–26. doi: 10.2135/cropsci2005.0018 CrossRefGoogle Scholar
  4. FAO (2002) Estado de la informacion forestal en Brasil. Informacíon para el desarrollo forestal sostenible, vol 3. Monografías de Países, SantiagoGoogle Scholar
  5. Fox JC, Peter K, Huiquan A (2001) Stochastic structure and individual-tree growth models. For Ecol Manag 154:261–276. doi: 10.1016/S0378-1127(00)00632-0 CrossRefGoogle Scholar
  6. Gobbo Neto L, Lopes NP (2007) Plantas medicinais: fatores de influência no conteúdo de metabólitos secundários. Quim Nova 30:374–381. doi: 10.1590/S0100-40422007000200026 CrossRefGoogle Scholar
  7. Griffith DA (1988) Estimating spatial autoregressive model parameters with commercial statistical package. Geogr Anal 20:176–186. doi: 10.1111/j.1538-4632.1988.tb00174.x CrossRefGoogle Scholar
  8. Grondona MO, Cressie N (1991) Using spatial considerations in the analysis of experiments. Technometrics 33:381–392. doi: 10.1080/00401706.1991.10484867 CrossRefGoogle Scholar
  9. Grondona MO, Crossa J, Fox PN, Pfeiffer WH (1996) Analysis of variety yield trials using two-dimensional separable ARIMA processes. Biometrics 52:763–770. doi: 10.2307/2532916 CrossRefGoogle Scholar
  10. Gumpertz ML, Graham JM, Ristaino JB (1997) Autologistic model of spatial pattern of phytophthora epidemic in bell pepper: effects of soil variables on disease presence. J Agric Biol Environ Stat 2:131–156. doi: 10.2307/1400400 CrossRefGoogle Scholar
  11. Kempton RA, Lockwood G (1984) Inter-plot competition in variety trials of field beans (Vicia fava L.). J Agric Sci (Camb) 98:599–611. doi: 10.1017/S0021859600047249 CrossRefGoogle Scholar
  12. Kim SJ, Kim JH, Park YH, Lee J, Park D (2011) Inhibitory effects of (–)-α-bisabolol on LPS-induced inflammatory response in RAW264.7 macrophages. Food Chem Toxicol 49:2580–2585. doi: 10.1016/j.fct.2011.06.076 CrossRefPubMedGoogle Scholar
  13. Loeuille B (2013) Eremanthus in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB5315. Accessed 08 Feb 2014
  14. Long DS (1996) Practical handbook of spatial statistics. CRC, London, p 307Google Scholar
  15. Long DS (1998) Spatial autoregression modeling of site-specific wheat yield. Geoderma 85:181–197. doi: 10.1016/S0016-7061(98)00019-6 CrossRefGoogle Scholar
  16. Mead R (1971) Models for interplant competition in irregularly spaced population. In: Patil GP et al (eds) Statistical ecology. Pensilvania State University Press, University Park, pp 13–22Google Scholar
  17. Mercer WB, Hall AD (1911) The experimental error of field trials. J Agric Sci (Camb) 4:107–132. doi: 10.1017/S002185960000160X CrossRefGoogle Scholar
  18. Nutto L (2001) Manejo do crescimento diamétrico de Araucaria angustifolia (Bert.) O. Ktze. baseado na árvore individual. Ciencia Florestal 11:9–25. http://www.redalyc.org/articulo.oa?id=53411202. Accessed 07 Feb 2014
  19. Nutto L, Spathelf P, Seling I (2006) Management of individual tree diameter growth and implications for pruning brazilian Eucalyptus grandis Hill ex. Maiden. Floresta 36:397–413Google Scholar
  20. Oliveira AD, Ribeiro ISA, Scolforo JRS, Mello JM, Acerbi Junior FW, Camolesi JF (2009) Market chain analysis of candeia timber (Eremanthus erythropappus). Cerne 15:257–264. http://www.redalyc.org/articulo.oa?id=74413021001. Accessed 07 Feb 2014
  21. Papadakis JS (1937) Méthode statistique pour des experiences surchamp. Institut d‘Amelioration des Plantes a` Thessaloniki, ThessalonikiGoogle Scholar
  22. Rossoni DF (2011) Análise de variância para experimentos com dependência espacial. Dissertation, Federal University of LavrasGoogle Scholar
  23. Schneider PR, Tonini H (2003) Utilização de variáveis Dummy em equações de volume para Acacia mearnsii De Wild. Ciencia Florestal 13:121–130. http://www.redalyc.org/articulo.oa?id=53413213. Accessed 07 Feb 2014
  24. Scolforo JRS, Oliveira AD, Acerbi Junior FW (2008a) Inventário Florestal de Minas Gerais: Equações de Volume, Peso de Matéria Seca e Carbono para diferentes Fitofisionomias da Flora Nativa. UFLA, Lavras, p 216Google Scholar
  25. Scolforo JRS, Oliveira AD, Mello JM, Silva CPC, Andrade IS, Melo VM, Camolesi JF, Borges LFR (2008b) O manejo da candeia nativa. UFLA, Lavras, p 44Google Scholar
  26. Scolforo JRS, Oliveira AD, Davide AC (2012) Manejo Sustentável da Candeia: o caminhar de uma nova experiência florestal em Minas Gerais. UFLA, Lavras, p 329Google Scholar
  27. Silva MA, Mello JM, Scolforo JRS, Czanck Junior L, Andrade IS, Oliveira AD (2008) Análise da distribuição espacial da candeia (Eremanthus erythropappus (DC.) MacLeish) sujeita ao sistema de manejo porta-sementes. Cerne 14:311–316. http://www.redalyc.org/articulo.oa?id=74411119004. Accessed 07 Feb 2014
  28. Silva CSJ, Oliveira AD, Rezende JLP, Mello JM, Scolforo JRS (2012) Economic feasibility and rotation age for stands of candeia (Eremanthus erythropappus). Cerne 18:695–706. doi: 10.1590/S0104-77602012000400020 CrossRefGoogle Scholar
  29. Smith AB, Cullis BR, Thompson R (2001) Analyzing variety by environment data using multiplicative mixed models and adjustments for spatial field trend. Biometrics 57:1138–1147. doi: 10.1111/j.0006-341X.2001.01138.x CrossRefPubMedGoogle Scholar
  30. Stroup WW, Baenziger PS, Mulitze DK (1994) Removing spatial variation from wheat yield trials: a comparison of methods. Crop Sci 34:62–66. doi: 10.2135/cropsci1994.0011183X003400010011x CrossRefGoogle Scholar
  31. Tabanca N, Demirci B, Crockett SL, Başer KH, Wedge DE (2007) Chemical composition and antifungal activity of Arnica longifolia, Aster hesperius, and Chrysothamnus nauseosus essential oils. J Agric Food Chem 55:8430–8435. doi: 10.1021/jf071379c CrossRefPubMedGoogle Scholar
  32. Wachtel G (1990) Untersuchungen zu Struktur und Dynamik eines Araukarien-Naturwaldes in Südbrasilien. Dissertation, Universität FreiburgGoogle Scholar
  33. Weber KS (2007) Manejo da Bracatinga (Mimosa scabrella Benth.) baseado no crescimento diamétrico de árvores individuais. Dissertation, Federal University of ParanaGoogle Scholar
  34. Yang RC, Juskiw P (2011) Analysis of covariance in agronomy and crop research. Can J Plant Sci 91:621–641CrossRefGoogle Scholar

Copyright information

© Northeast Forestry University and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Henrique Ferraço Scolforo
    • 1
  • José Roberto Soares Scolforo
    • 1
    Email author
  • José Marcio de Mello
    • 1
  • Antônio Carlos Ferraz Filho
    • 1
  • Diogo Francisco Rossoni
    • 2
  • Thiza Falqueto Altoé
    • 1
  • Antônio Donizette Oliveira
    • 1
  • Renato Ribeiro de Lima
    • 3
  1. 1.Department of Forest ScienceFederal University of LavrasLavrasBrazil
  2. 2.Department of StatisticsState University of MaringáMaringáBrazil
  3. 3.Department of StatisticsFederal University of LavrasLavrasBrazil

Personalised recommendations