Skip to main content
Log in

Genetic diversity and phylogenetic relationships between and within wild Pistacia species populations and implications for its conservation

  • ORIGINAL PAPER
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Although cultivation and utilization of Pistacia are fully exploited, the evolutionary history of the Pistacia genus and the relationships among the species and accessions is still not well understood. The aim of this study was to analyze random amplified polymorphic DNA (RAPD) in a total of 50 accessions of wild pistachio species, which included five populations Pistacia vera, Pistacia khinjuk, Pistacia atlantica, Pistacia mutica, and Pistacia eurycarpa. High levels of genetic diversity were detected within wild pistachio accessions, as revealed by using the unweighted pair-group method with arithmetic averaging and supported via analysis of molecular variance. The objectives of this investigation were to estimate marker indices, polymorphic information contents (PICs), and genetic similarities (GS) for RAPD markers; assess the genetic diversity of Pistacia species, using GS estimated from RAPD fingerprints and molecular characterization; and facilitate the use of markers in inter-specific introgression and cultivar improvement. Out of the 149 polymerase chain reaction fragments that were scored, 146 (97.98 %) were polymorphic. Genetic similarities ranged from 0.3 to 0.86 %, marker indices ranged from 2.98 to 17.74 %, and PICs ranged from 0.80 to 0.99 %. Our results provided great molecular identification of all assayed genotypes, which have shown that there is large quantity of genetic diversity among the pistachio accessions. This finding might render striking information in breeding management strategies for genetic conservation and cultivar development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

GS:

Genetic similarities

HT:

Total gene diversity

HS:

Within gene diversity

MI:

Marker index

PICs:

Polymorphic information contents

POL:

Polymorphism percentage

RAPD:

Random amplified polymorphic DNA

RFLPs:

Restriction fragment-length polymorphisms

References

  • Ahmad R, Ferguson L, Southwick SM (2003a) Identification of pistachio (Pistacia vera L.) nuts with microsatellite markers. J Am Soc Hortic Sci 128:898–903

    CAS  Google Scholar 

  • Ahmad R, Struss D, Southwick SM (2003b) Development and characterization of microsatellite markers in citrus. J Am SocHorticSci 128:584–590

    CAS  Google Scholar 

  • Ahmadi Afzadi M, SeyedTabatabaei BE, Mohammadi SA, Tajabadipur A (2007) Comparison of genetic diversity in species and cultivars of pistachio (Pistacia vera L.) based on amplified fragment length polymorphism marker. Iran J Biotechnol 5:147–152

    Google Scholar 

  • Allendorf FW (1986) Genetic drift and the loss of alleles versus heterozygosity. Zoo Biol 5:181–190

    Article  Google Scholar 

  • AL-Sousli M, Faory H, Nakar M, Zaid S, Al-Safadi B, Al-Saghir M (2014) Genetic relationships among some Pistacia species (Anacardiaceae) in Syria. Middle-East J Sci Res 21:1487–1497

    Google Scholar 

  • Badfar-Chaleshtori S, Shiran B, Kohgard M, Mommeni H, Hafizi A, Khodambashi M, Mirakhorli N, Sorkheh K (2012) Assessment of genetic diversity and structure of Imperial Crown (Fritillaria imperialis L.) populations in the Zagros region of Iran using AFLP, ISSR and RAPD markers and implications for its conservation. Biochem Syst Ecol 42:35–48

    Article  CAS  Google Scholar 

  • Banihashemi Z (1995) The presence of pistachio gummosis in Iran. Paper presented at the 1st national workshop on the pistachio nut, Rafsanjan, Iran, 24–26 Sept 1995

  • Barone E, Diamarco L, Marra FP, Sidari M (1993) Isozymes and multivariate analysis to discriminate male and female Sicilian germplasm of pistachio. IXth Groupe de Recherchesetd’EtudesMediterraneen pour le Pistachieretl’Amandier, Agrigento, pp 73–79

  • Behboodi B (2003) Ecological distribution study of wild pistachios for selection of rootstock. Options Mediterr Ser A 63:61–67

    Google Scholar 

  • Brown-Guedira GL, Thompson JA, Nelson RL, Warburton ML (2000) Evaluation of genetic diversity of soybean introductions and North American ancestors using RAPD and SSR markers. Crop Sci 40:815–823

    Article  CAS  Google Scholar 

  • Caicedo AL, Gaitan E, Duque MC, Chica OT, Tohma J (1999) AFLP fingerprinting of Phaseolus lunatus L. and related wild species from South America. Crop Sci 39:1497–1507

    Article  Google Scholar 

  • Cruse-Sanders JM, Hamrick JL, Ahumada JA (2005) Consequences of harvesting for genetic diversity in American ginseng (Panaxqu inquefolius L.): a simulation study. BiodiversConserv 14:493–504

    Google Scholar 

  • Dollo L (1993) An isozyme study of Sicilian Pistacia species, varieties, and offspring from artificial pollination. IXth Groupe de Recherchesetd’EtudesMediterraneen pour le Pistachieretl’Amandier, Agrigento, pp 80–87

  • Dollo L, Hormaza JI, Polito VS (1995) RAPD polymorphism among pistachio (Pistacia vera) cultivars. Fruit Var J 49:147–152

    Google Scholar 

  • Edwards KJ (1998) Randomly amplified polymorphic DNAs (RAPDs). In: Karp A, Issac PG, Ingram DE (eds) Molecular tools for screening biodiversity-plants and animals. Chapman and Hall, London, pp 171–179

    Chapter  Google Scholar 

  • Esmail-pour A (2001) Distribution, use and conservation of pistachio in Iran. In: Padulosi S, Hadj-Hassan A (eds) In towards a comprehensive documentation and use of Pistacia genetic diversity in central and West Asia, North Africa and Europe. Report of the IPGRI workshop, 14–17 December 1998, Ibrid, Jordan. IPGRI, Rome, Italy

  • Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Francisco-Ortega J, Santos-Guerra A, Kim SC, Crawford DJ (2000) Plant genetic diversity in the Canary Islands: a conservation perspective. Am J Bot 87:909–919

    Article  CAS  PubMed  Google Scholar 

  • Fu YM, Chen WH, Tsai WT, Lin YS, Chyou MS, Chen YH (1997) Phylogenetic studies of taxonomy and evolution among wild species of Phalaenopsis by Random Amplified DNA markers. Report of the Taiwan Sugar Research Institute 157:27–42

  • Fu YB, Peterson G, Diederichsen A, Richards KW (2002) RAPD analysis of genetic relationships of seven flax species in the genus Linum L. Genet Resour Crop Evol 49:253–259

    Article  Google Scholar 

  • Ghahreman A, Attar F (1999) Biodiversity of plant species in Iran, vol 1. Publication of Tehran University, Tehran

    Google Scholar 

  • Goh MWK, Kumar PP, Lim SH, Tan HTW (2005) Random amplified polymorphic DNA analysis of the moth orchid, Phalaenopsis (Epidendroideae: Orchidaceae). Euphytica 141:11–22

    Article  CAS  Google Scholar 

  • Golan-Goldhirsh A, Barazani O, Wang ZS, Khadka DK, Saunders JA, Kostiukovsky V (2004) Genetic relationships among Mediterranean Pistacia species evaluated by RAPD and AFLP markers. Plant SystEvol 246:9–18

    CAS  Google Scholar 

  • Guilford P, Prakash S, Zhu JM, Rikkerink E, Gardiner S, Bassett H, Forster R (1997) Microsatellite in Malus × domestica (apple). Abundance, polymorphism and cultivar identification. TheorAppl Genet 94:249–255

    Article  CAS  Google Scholar 

  • Hamrick JL, Godt MJW (1996) Conservation genetics of endemic plant species. In: Avise JC, Hamrick JL (eds) Conservation genetics: case histories from nature. Chapman and Hall, New York, pp 281–304

    Chapter  Google Scholar 

  • Hormaza JI, Dollo L, Polito VS (1994) Determination of relatedness and geographical movements of Pistacia vera L. (pistachio, Anacardiaceae) germplasm by RAPD analysis. Econ Bot 48:349–358

    Article  Google Scholar 

  • Hormaza JI, Pinney K, Polito VS (1998) Genetic diversity of pistachio (Pistacia vera, Anacardiaceae) germplasm based on randomly amplified polymorphic DNA (RAPD) markers. Econ Bot 52:78–87

    Article  Google Scholar 

  • IPGRI (1998) Descriptors for Pistacia spp (excluding P. vera L.). International Plant Genetic Resources Institute, Rome

  • Kafkas S (2006) Phylogenetic analysis of the genus Pistacia by AFLP markers. Plant SystEvol 262:113–124

    Google Scholar 

  • Kafkas S, Perl-Treves R (2001) Morphological and molecular phylogeny of Pistacia species in Turkey. Theor Appl Genet 102:908–915

    Article  CAS  Google Scholar 

  • Kafkas S, Perl-Treves R (2002) Interspecific relationship in the genus Pistacia L. (Anacardiaceae) based on RAPD fingerprinting. J Hort Sci 37:168–171

    CAS  Google Scholar 

  • Kafkas S, Kafkas E, Perl-Treves R (2002) Morphological diversity and germplasm survey of three wild Pistacia species in Turkey. Genet Resour Crop Evol 49:261–270

    Article  Google Scholar 

  • Kafkas S, Kaska A, Wassimi AN, Padulosi S (2006a) Molecular characterisation of Afghan pistachio accessions by amplified fragment length polymorphisms (AFLPs). J Hortic Sci Biotechnol 81(5):864–868

    Article  CAS  Google Scholar 

  • Kafkas S, Ozkan H, Ak BE, Acar I, Alti HS (2006b) Detecting DNA polymorphism and genetic diversity in a wide pistachio germplasm: comparison of AFLP, ISSR, and RAPD marker. J Am Soc Hortic Sci 131:522–529

    CAS  Google Scholar 

  • Kafkas S, Dogan Y, Zaloglu S (2009) Phylogenetic analysis in the genus Pistacia by simple sequence repeat markers. In: 5th international symposium on pistachios and almonds. Abstract book, p. 84, October 6–10, Sanliurfa, Turkey

  • Karimi HR, Kafkas S (2011) Genetic relationships among Pistacia species studied by SAMPL markers. Plant Syst Evol 297:207–212

    Article  CAS  Google Scholar 

  • Karimi HR, Kafkas S, Zamani Z, Ebadi A, Fatahi MR (2009a) Genetic relationships among species and cultivars of Pistacia using AFLP marker. Plant Syst Evol 279:21–28

    Article  CAS  Google Scholar 

  • Karimi HR, Zamani Z, Ebadi A, Fatahi MR (2009b) Morphological diversity of Pistacia species in Iran. Genet Resour Crop Evol 56:561–571

    Article  Google Scholar 

  • Karimi HR, Zamani Z, Ebadi A, Fatahi MR (2009c) Genetic relationship of some Pistacia species using RAPD and AFLP markers. Hort Environ Biotechnol 50:519–524

    CAS  Google Scholar 

  • Karimi HR, HajizadehHossinAbadi M, MalekiKohbanani A (2012) Genetic diversity of Pistacia khinjuk Stocks. using RAPD markers and leaf morphological characters. Plant Syst Evol 298:963–968

    Article  CAS  Google Scholar 

  • Katsiotis A, Hagidimitriou M, Drossou A, Pontikis C, Loukas M (2003) Genetic relationships among species and cultivars of Pistacia using RAPDs and AFLPs. Euphytica 132:279–286

    Article  CAS  Google Scholar 

  • Macpherson JM, Eckstein PE, Scoles GJ, Gajadhar AA (1993) Variability of the random amplified polymorphic assay among thermal cyclers and effects of primer and DNA concentration. Mol Cell Probe 7:293–299

    Article  CAS  Google Scholar 

  • Maggs DH (1973) Genetic resources in pistachio. Plant Genet Resour Newsl 29:7–15

    Google Scholar 

  • Mantel N (1967) The detection of disease clustering and generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Milligan BG, Leebens-Mack J, Strand AE (1994) Conservation genetics: beyond the maintenance of marker diversity. MolEcol 12:844–855

    Google Scholar 

  • Mirzaei S, Bahar M, Sharifnabi B (2005) A phylogenetic study of Iranian wild pistachio species and some cultivars using RAPD marker. Acta Hortic 726:39–43

    Google Scholar 

  • Muralidharan K, Wakeland EK (1993) Concentration of primer and template qualitatively affects products in random amplified polymorphic DNA PCR. Biotechniques 14:362–364

    CAS  PubMed  Google Scholar 

  • Nahum S, Inbar M, Nèeman G, Ben-Shlomo R (2009) Phenotypic plasticity and gene diversity in Pistacia lentiscus L. along environmental gradients in Israel. Tree Genet Geno 4:777–785

    Article  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci (USA) 70:3321–3323

    Article  CAS  Google Scholar 

  • Niknejad A, Kadir MA, Kadzimin SB, Abdullah NAP, Sorkheh K (2009) Molecular characterization and phylogenetic relationships among and within species of Phalaenopsis (Epidendroideae: Orchidaceae) based on RAPD analysis. Afr J Biotechnol 8:5225–5240

    CAS  Google Scholar 

  • Noroozi S, Baghizadeh A, JalaliJavaran M (2009) The genetic diversity of Iranian pistachio (Pistacia vera L.) cultivars revealed by ISSR markers. Biol Diver Conserv 2:50–56

    Google Scholar 

  • Ozden-Tokatli Y, Akdemir H, Tilkat E, Onay A (2010) Current status and conservation of Pistacia germplasm. Biotechnol Adv 28:130–141

    Article  CAS  PubMed  Google Scholar 

  • Parfitt DE, Badenes ML (1998) Molecular phylogenetic analysis of the genus Pistacia. Acta Hortic 470:143–151

    Article  CAS  Google Scholar 

  • Parfitt D, Badens ML (1997) Phylogeny of the genus Pistacia as determined from analysis of the chloroplast genome. Proc Natl Acad Sci USA 94:7987–7992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pazouki L, SalehiShanjani P, Hagidimitrion M, Pirseyedi SM, Naghavi MR, Avanzato D, Quarta R, Kafkas S, Ghareyazie B, Ghaffari MR, KhayamNekoui SM, Mardi M (2009) Genetic diversity and relationships among Pistacia species and cultivar. 5th international symposium on Pistachio and Almonds. Abstract book. Saliurfa, Turkey, p 81

  • Pazouki L, Mardi M, SalehiShanjani P, Hagidimitriou M, Pirseyedi SM, Naghavi MR, Avanzato D, Vendramin E, Kafkas S, Ghareyazie B, Ghaffari MR, KhayamNekoui SM (2010) Genetic diversity and relationships among Pistacia species and cultivars. Conserv Genet 11:311–318

    Article  Google Scholar 

  • Powell W, Morgante M, Andre C, Hanafey Mm Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238

    Article  CAS  Google Scholar 

  • Rohlf M (1998) NTSYSpc. Numerical taxonomy and multivariate analysis system. Version 2.02i. Department of Ecology and Evolution. State University of New York

  • Rovira M, Batlle I, Romero M, Vargas FJ (1995) Isoenzymic identification of Pistacia species. Acta Hortic 419:265–271

    Article  CAS  Google Scholar 

  • SalehiShanjani P, Mardi M, Pazouki L, Hagidimitriou M, Avanzato D, MostafaPirseyedi S, Ghaffari MR, KhayamNekoui SM (2009) Analysis of the molecular variation between and within cultivated and wild Pistacia species using AFLPs. Tree Genet Genome 5:447–458

    Article  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2001) Arlequin: a software for population genetics data analysis. Version 2.000. Genetics and Biometry Lab, Dep. of Athropology, University of Geneva, Geneva

  • Sorkheh K, Shiran B, Gradziel TM, Epperson BK, Martinez-Gomez P, Asadi E (2007) Amplified fragment length polymorphism as a tool for molecular characterization of almond germplasm: genetic diversity among cultivated genotypes and related wild species of almond, and its relationships with agronomic traits. Euphytica 156:237–344

    Article  Google Scholar 

  • Sorkheh K, Shiran B, Rouhi V, Asadi E, Jahanbazi H, Moradi H, Gradziel TM, Martinez-Gomez P (2009) Phenotypic diversity within native Iranian almond (Prunus sp.) species and their breeding potential. Gen Resour Crop Evol 56:947–961

    Article  Google Scholar 

  • Struss D, Ahmad R, Southwick SM (2003) Analysis of sweet cherry (Prunusavium L.) cultivars using SSR and AFLP markers. J Am Soc Hortic Sci 128:904–909

    CAS  Google Scholar 

  • Talebi M, Kazemi M, EbrahimSayed-Tabatabaei B (2012) Molecular diversity and phylogenetic relationships of Pistacia vera, Pistacia atlantica subsp. mutica and Pistacia khinjuk using SRAP markers. Biochem Syst Ecol 44:179–185

    Article  CAS  Google Scholar 

  • Tanksley SD, Young ND, Paterson AH, Bonierbale MW (1989) RFLP in plant breeding: new tools for an old science. Biotech 7:257–264

    Article  CAS  Google Scholar 

  • TayefehAliakbarkhany S, Talaie AR, Fatahi Moghadam MR (2013) Investigation of genetic diversity among Pistacia Vera In the Khorasan by using molecular. Mod Genet 8:169–176

    Google Scholar 

  • Tsai C-C, Chou C-H (2007) Molecular phylogenetics of Phalaenopsis taxa: an updated review. Orchid Sci Biotechnol 1:44–50

    Google Scholar 

  • Van de Peer Y, De Wachter R (1994) TREECON for Windows: as software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. ComputApplBiosci 10:569–570

    Google Scholar 

  • Vendramin E, Dettori MT, Verde I, Micali S, Giovinazzi J, Mardi M (2009) Molecular characterization of Pistacia genus by microsatellite markers. Acta Hortic 825:55–61

    Article  Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acids Res 18:6531–6535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wishart D (1987) CLASTAN user manual, 3rd edn. Program Library Unit, Univ. of Edinburgh, Edinburgh

    Google Scholar 

  • Yeh FC, Yang RC (1999) POPGENE Version 1.31. University of Albert and Tim Boyle, Center for International Research

  • Zografou P, Linos A, Hagidimitriou M (2010) Genetic diversity among different genotypes of Pistacia lentiscus var. chia (mastic tree). In: Zakynth in os G. (ed.). XIV GREMPA Meetingon Pistachios and Almonds. Zaragoza: CIHEAM/FAO/AUA/TEI Kalamatas/NAGREF, Options Méditerranéennes: Série A. Séminaires Méditerranéens 94:159–163

  • Zohary M (1952) A monographic study of the genus Pistacia. Palest J Bot Jerus Ser 5:187–228

    Google Scholar 

  • Zohary D (1996) The genus Pistacia L. In: Padulosi S, Caruso T, Barone E (eds) Taxonomy, distribution, conservation and uses of Pistacia genetic resources. IPGRI, Rome, pp 1–11

    Google Scholar 

Download references

Acknowledgments

We thank the Iranian Pistachio Research Institute, Rafsanjan, Iran. The authors would like extend their appreciation to Heman Ebrahimi for his help in arranging pictures on the www.banehpedia.com website and providing us access.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Sorkheh.

Additional information

Project funding: This study was supported by Shahid Chamran University of Ahwaz, Iran.

The online version is available at http://www.springerlink.com

Corresponding editor: Hu Yanbo

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iranjo, P., NabatiAhmadi, D., Sorkheh, K. et al. Genetic diversity and phylogenetic relationships between and within wild Pistacia species populations and implications for its conservation. J. For. Res. 27, 685–697 (2016). https://doi.org/10.1007/s11676-015-0098-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-015-0098-9

Keywords

Navigation