Skip to main content
Log in

Sequence-related amplified polymorphism primer screening on Chinese fir (Cunninghamia lanceolata (Lamb.) Hook)

  • ORIGINAL PAPER
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) is one of the most important coniferous tree species used for timber production in China. Here, we conducted a sequence-related amplified polymorphism (SRAP) primer screening assay with a total of 594 primer combinations, using 22 forward and 27 reverse primers on four representative Chinese fir genotypes. The obtained results indicated that Chinese fir genomic DNA has a notable amplification bias on the employed forward or reverse primer nucleotides (3′ selection bases). Out of the tested primer sets, 35 primer combinations with clearly distinguished bands, stable amplification, and rich polymorphism were selected and identified as optimal primer sets. These optimal primer pairs gave a total of 379 scorable bands, including 265 polymorphic bands, with an average of 10.8 bands and 7.6 polymorphic bands per primer combination. The produced band number for each optimal primer set ranged from 7 to 14 with a percentage of polymorphic bands spanning from 33.3 to 100.0 %. These primer combinations could facilitate the next SRAP analysis assays in Chinese fir.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agarwal M, Shrivastava N, Padh H (2008) Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep 27(4):617–631

    Article  CAS  PubMed  Google Scholar 

  • Ahmad R, Potter D, Southwick SM (2004) Genotyping of peach and nectarine cultivars with SSR and SRAP molecular markers. J Am Soc Hortic Sci 129(2):204–210

    CAS  Google Scholar 

  • Ai PF, Zhen ZJ, Jin ZZ (2011) Genetic diversity and relationships within sweet kernel apricot and related Armeniaca species based on sequence-related amplified polymorphism markers. Biochem Syst Ecol 39(4–6):694–699

    Article  CAS  Google Scholar 

  • Baloch FS, Kurt C, Arioğlu H, Ozkan H (2010) Assaying of diversity among soybean (Glycin max (L.) Merr.) and peanut (Arachis hypogaea L.) genotypes at DNA level. Turk J Agric For 34:285–301

    Google Scholar 

  • Bracci T, Busconi M, Fogher C, Sebastiani L (2011) Molecular studies in olive (Olea europaea L.): overview on DNA markers applications and recent advances in genome analysis. Plant Cell Rep 30(4):449–462

    Article  CAS  PubMed  Google Scholar 

  • Budak H, Shearman RC, Gaussoin RE, Dweikat I (2004) Application of sequence-related amplified polymorphism markers for characterization of turfgrass species. HortScience 39:955–958

    CAS  Google Scholar 

  • Castonguay Y, Cloutier J, Bertrand A, Michaud R, Laberge S (2010) SRAP polymorphisms associated with superior freezing tolerance in alfalfa (Medicago sativa spp. sativa). Theor Appl Genet 120(8):1611–1619

    Article  CAS  PubMed  Google Scholar 

  • Chen YQ, Ye BY, Zhu JM, Zhuang ZH, Pan DR, Chen RK (2001) Analysis of genetic relationship among Chinese fir (Cuninghamia lanceolata Hook) provenances by RAPD. Appl Environ Biol 7(2):l30–l133 (In Chinese)

    Google Scholar 

  • Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc B Biol Sci 363(1491):557–572

    Article  CAS  Google Scholar 

  • Feng FJ, Chen MM, Zhang DD, Sui X, Han SJ (2009) Application of SRAP in the genetic diversity of Pinus koraiensis of different provenances. Afr J Biotechnol 8(6):1000–1008

    CAS  Google Scholar 

  • Ferriol M, Picó B, Nuez F (2003) Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theor Appl Genet 107(2):271–282

    Article  CAS  PubMed  Google Scholar 

  • Guo DL, Luo ZR (2006) Genetic relationships of some PCNA persimmons (Diospyros kaki Thunb.) from China and Japan revealed by SRAP analysis. Genet Resour Crop Evol 53:1597–1603

    Article  CAS  Google Scholar 

  • Han XY, Wang LS, Shu QY, Liu ZA, Xu SX, Tetsumura T (2008) Molecular characterization of tree peony germplasm using sequence-related amplified polymorphism markers. Biochem Genet 46:162–179

    Article  CAS  PubMed  Google Scholar 

  • He ZX, Shi JS, Yin ZF, Chen XC, Yu RZ (2000) Detection of genetic markers associated with growth traits in Chinese fir. J Zhejiang For Coll 17(4):350–354 (In Chinese)

    Google Scholar 

  • Huang HH, Xu LL, Tong ZK, Lin EP, Liu QP, Cheng LJ, Zhu MY (2012) De novo characterization of the Chinese fir (Cunninghamia lanceolata) transcriptome and analysis of candidate genes involved in cellulose and lignin biosynthesis. BMC Genom 13:648

    Article  CAS  Google Scholar 

  • Jing ZB, Wang XP, Cheng JM (2013) Analysis of genetic diversity among Chinese wild Vitis species revealed with SSR and SRAP markers. Genet Mol Res 12(2):1962–1973

    Article  CAS  PubMed  Google Scholar 

  • Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461

    Article  CAS  Google Scholar 

  • Li M, Shi J, Li F, Gan S (2007) Molecular characterization of elite genotypes with in a second-generation Chinese Fir (Cunninghamia lanceolata) breeding population using RAPD markers. Scientia Silvae Sinicae 43(12):50–55

    Google Scholar 

  • Mishra MK, Nishani S, Jayarama (2011) Genetic relationship among indigenous coffee species from India using RAPD ISSR and SRAP markers. Biharean Biologist 5(1):17–24

    Google Scholar 

  • Müller-Starck G, Liu YQ (1988) Genetics of Cuninghamia lanceolata HOOK. 1 genetic analysis. Silvae Genetica 37:236–243

    Google Scholar 

  • Nei M, Li W (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 79:5269–5273

    Article  Google Scholar 

  • Ouyang L, Chen JH, Zheng RH, Xu Y, Lin YF, Huang JH, Ye DQ, Fang YH, Shi JS (2014) Genetic diversity among the germplasm collections of the Chinese fir in 1st breeding population upon SSR markers. J Nanjing For Univ (Nat Sci Edn) 38(1):21–26 (In Chinese)

    Google Scholar 

  • Poczai P, Varga I, Laos M, Cseh A, Bell N, Valkonen JP, Hyvönen J (2013) Advances in plant gene-targeted and functional markers: a review. Plant Methods 9(1):6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rana MK, Arora K, Singh S, Singh AK (2013) Multi-locus DNA fingerprinting and genetic diversity in jute (Corchorus spp.) based on sequence-related amplified polymorphism. J Plant Biochem Biotechnol 22(1):1–8

    Article  CAS  Google Scholar 

  • Shen AH, Li HB, Wang K, Ding HM, Zhang X, Fan L, Jiang B (2011) Sequence characterized amplified region (SCAR) markers-based rapid molecular typing and identification of Cunninghamia lanceolata. Afr J Biotechnol 10(82):19066–19074

    CAS  Google Scholar 

  • Shi J, Zhen Y, Zheng RH (2010) Proteome profiling of early seed development in Cunninghamia lanceolata (Lamb.) Hook. J Exp Bot 61(9):2367–2381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smutkupt S, Peyachoknagul S, Kowitwanich K, Onto S, Thanananta N, Julsrigival S, Kunkaew W, Punsupa V (2006) Varietal determination and genetic relationship analysis of highland legumes using SRAP markers. SABRAO J Breed Genet 38(1):19–27

    Google Scholar 

  • Soleimani MH, Talebi M, Sayed-Tabatabaei BE (2012) Use of SRAP markers to assess genetic diversity and population structure of wild, cultivated, and ornamental pomegranates (Punica granatum L.) in different regions of Iran. Plant Syst Evol 298:1141–1149

    Article  Google Scholar 

  • Tong CF, Shi JS (2004) Constructing genetic linkage maps in Chinese fir using F1 progeny. Acta Genetica Sinica 31(10):1149–1156 (In Chinese)

    CAS  PubMed  Google Scholar 

  • Uzun A, Yesiloglu T, Aka-Kacar Y, Tuzcu O, Gulsen O (2009) Genetic diversity and relationships within Citrus and related genera based on sequence related amplified polymorphism markers (SRAPs). Sci Hortic 121:306–312

    Article  CAS  Google Scholar 

  • Valdez-Ojeda R, Hernandez-Stefanoni JL, Aguilar-Espinosa M, Rivera-Madrid R, Ortiz R, Quiros CF (2008) Assessing morphological and genetic variation in Annatto (Bixa orellana L.) by sequence-related amplified polymorphism and cluster analysis. HortScience 43(7):2013–2017

    Google Scholar 

  • Walter C, Carson SD, Menzies MI, Richardson T, Carson M (1998) Review: application of biotechnology to forestry -molecular biology of conifers. World J Microbiol Biotechnol 14(3):321–330

    Article  Google Scholar 

  • Wang G, Gao Y, Yang L, Shi J (2007) Identification and analysis of differentially expressed genes in differentiating xylem of Chinese fir (Cunninghamia lanceolata) by suppression subtractive hybridization. Genome 50(12):1141–1155

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Gao Y, Wang J, Yang L, Song R, Li X, Shi J (2011) Overexpression of two cambium-abundant Chinese fir (Cunninghamia lanceolata) α-expansin genes ClEXPA1 and ClEXPA2 affect growth and development in transgenic tobacco and increase the amount of cellulose in stem cell walls. Plant Biotechnol J 9(4):486–502

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Chen J, Liu W, Luo Z, Wang P, Zhang Y, Zheng R, Shi J (2013) Transcriptome characteristics and six alternative expressed genes positively correlated with the phase transition of annual cambial activities in Chinese Fir (Cunninghamia lanceolata (Lamb.) Hook). PLoS One 8(8):e71562

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang YL, Ma XQ, Zhang MQ (2009) Molecular polymorphic analysis for different geographic provenances of Chinese Fir. J Trop Subtrop Biol 17(2):183–189 (In Chinese)

    CAS  Google Scholar 

  • Yeh FC, Shi J, Yang R, Hong J, Ye Z (1994) Genetic diversity and multilocus associations in Cunninghamia lanceolata (Lamb.) Hook from The People’s Republic of China. Theor Appl Genet 88:465–471

    CAS  PubMed  Google Scholar 

  • You Y, Hong JS (1998) Application of RAPD marker to genetic variation of Chinese fir provenances. Scientia Silvae Sinicae 34(4):32–38 (In Chinese)

    Google Scholar 

  • Youssef M, James AC, Rivera-Madrid R, Ortiz R, Escobedo-GraciaMedrano RM (2011) Musa genetic diversity revealed by SRAP and AFLP. Mol Biotechnol 47(3):189–199

    Article  CAS  PubMed  Google Scholar 

  • Zhao WG, Fang RJ, Pan YL, Yang YH, Chung JW, Chung IM, Park YJ (2009) Analysis of genetic relationships of mulberry (Morus L.) germplasm using sequence-related amplified polymorphism (SRAP) markers. Afr J Biotechnol 8(11):2604–2610

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Sciences Foundation of China (No. 31200506) and the Special Fund for Forest Scientific Research in the Public Welfare (No. 201404127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dehuo Hu.

Additional information

Huiquan Zheng and Hongjing Duan contributed equally to this work.

The online version is available at http://www.springerlink.com.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, H., Duan, H., Hu, D. et al. Sequence-related amplified polymorphism primer screening on Chinese fir (Cunninghamia lanceolata (Lamb.) Hook). J. For. Res. 26, 101–106 (2015). https://doi.org/10.1007/s11676-015-0025-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-015-0025-0

Keywords

Navigation