Skip to main content

Advertisement

Log in

Advances in experimental methods for root system architecture and root development

  • REVIEW ARTICLE
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Plant roots play important roles in acquisition of water and nutrients, storage, anchoring, transport, and symbiosis with soil microorganisms, thus quantitative researches on root developmental processes are essential to understand root functions and root turnover in ecosystems, and at the same time such researches are the most difficult because roots are hidden underground. Therefore, how to investigate efficiently root functions and root dynamics is the core aspect in underground ecology. In this article, we reviewed some experimental methods used in root researches on root development and root system architecture, and summarized the advantages and shortages of these methods. Based on the analyses, we proposed three new ways to more understand root processes: (1) new experimental materials for root development; (2) a new observatory system comprised of multiple components, including many observatory windows installed in field, analysis software, and automatic data transport devices; (3) new techniques used to analyze quantitatively functional roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh YS, Amasino R, Scheres B (2004) The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119:109–120

    CAS  PubMed  Google Scholar 

  • al Hagrey SA (2007) Geophysical imaging of root-zone, trunk, and moisture heterogeneity. J Exp Bot 58:839–854

    Google Scholar 

  • Aloni R, Aloni E, Langhans M, Ulirich CI (2006) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot 97:883–893

    PubMed Central  CAS  PubMed  Google Scholar 

  • Baluška F, Mancuso S, Volkmann D, Barlow PW (2009) The ‘root-brain’ hypothesis of Charles and Francis Darwin: revival after more than 125 years. Plant Signal Behav 4:1121–1127

    PubMed Central  PubMed  Google Scholar 

  • Baluška F, Mancuso S, Volkmann D, Barlow PW (2010) Root apex transition zone: a signalling–response nexus in the root. Trends Plant Sci 15:402–408

    PubMed  Google Scholar 

  • Barron JL, Liptay A (1994) Optical flow to measure minute increments in plant growth. Bioimaging 2:57–61

    Google Scholar 

  • Barron JL, Fleet DJ, Beauchemin SS (1994) Performance of optical flow techniques. Int J Comput Vis 12:43–77

    Google Scholar 

  • Barton CVM, Montagu KD (2004) Detection of tree roots and determination of root diameters by ground penetrating radar under optimal conditions. Tree Physiol 24:1323–1331

    PubMed  Google Scholar 

  • Basu P, Pal A, Lynch JP, Brown KM (2007) A novel image analysis technique for kinematic study of growth and curvature. Plant Physiol 145:305–316

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bengough AG, McKenzie BM, Hallett PD, Valentine TA (2011) Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits. J Exp Bot 62:59–68

    CAS  PubMed  Google Scholar 

  • Berntson GM (1994) Root systems and fractals: how reliable are calculations of fractal dimensions? Ann Bot 73:281–284

    Google Scholar 

  • Berntson GM, Woodward FI (1992) The root system architecture and development of Senecio vulgaris in elevated CO2 and drought. Funct Ecol 6:324–333

    Google Scholar 

  • Bhalerao RP, Eklof J, Ljung K, Marchant A, Bennett M, Sandberg G (2002) Shoot-derived auxin is essential for early lateral root emergence in Arabidopsis seedlings. Plant J 29:325–332

    CAS  PubMed  Google Scholar 

  • Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW, Benfey PN (2003) A gene expression map of the Arabidopsis root. Science 302:1956–1960

    CAS  PubMed  Google Scholar 

  • Boumma TJ, Nielsen KL, Koutstaal B (2000) Sample preparation and scanning protocol for computerised analysis of root length and diameter. Plant Soil 218:185–196

    Google Scholar 

  • Bushamuka VN, Zobel RW (1998) Differential genotypic and root type penetration of compacted soil layer. Crop Sci 38:776–781

    Google Scholar 

  • Busscher WJ, Lipiec J, Bauer PJ, Carter TE Jr (2000) Improved root penetration of soil hard layers by a selected genotype. Comm Soil Sci Plant Analysis 31:3089–3101

    CAS  Google Scholar 

  • Butnor JR, Doolittle JA, Johnsen KH, Samuelson L, Stokes T, Kress L (2003) Utility of ground-penetrating radar as a root biomass survey tool in forest systems. Soil Sci Soc Am J 67:1607–1615

    CAS  Google Scholar 

  • Casimiro I, Marchant A, Bhalerao RP, Beeckmand T, Dhooge S, Swarup R, Graham N, Inze D, Sandberg G, Casero PJ, Bennett M (2001) Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13:843–852

    PubMed Central  CAS  PubMed  Google Scholar 

  • Clark RT, MacCurdy RB, Jung JK, Shaff JE, McCouch SR, Aneshansley DJ, Kochian LV (2010) Three-dimensional root phenotyping with a novel imaging and software platform. Plant Physiol 156:455–465

    Google Scholar 

  • Clausnitzer V, Hopmans JW (1994) Simultaneous modeling of transient three- dimensional root growth and soil water flow. Plant Soil 164:299–314

    CAS  Google Scholar 

  • Colón-Carmona A, You R, Haimovitch-Gal T, Doerne P (1999) Spatio-temporal analysis of mitotic activity with a labile cyclin–GUS fusion protein. Plant J 20:503–508

    PubMed  Google Scholar 

  • Correa-Aragunde N, Graziano M, Lamattina L (2004) Nitric oxide plays a central role in determining lateral root development in tomato. Planta 218:900–905

    CAS  PubMed  Google Scholar 

  • Correa-Aragunde N, Graziano M, Chevalier C, Lamattina L (2006) Nitric oxide modulates the expression of cell cycle regulatory genes during lateral root formation in tomato. J Exp Bot 57:581–588

    CAS  PubMed  Google Scholar 

  • Costa C, Dwyer LM, Dutilleul P, Foroutan-pour K, Liu A, Hamel C, Smith DL (2003) Morphology and fractal dimension of root systems of maize hybrids bearing the leafy trait. Can J Bot 81:706–713

    Google Scholar 

  • Danjon F, Barker DH, Drexhage M, Stokes A (2008) Using three-dimensional plant root architecture in models of shallow-slope stability. Ann Bot 101:1281–1293

    PubMed Central  PubMed  Google Scholar 

  • Danjon F, Bert D, Godin C, Trichet P (1999a) Structural root architecture of 5-year-old Pinus pinaster measured by 3D digitising and analysed with AMAPmod. Plant Soil 217:49–63

    Google Scholar 

  • Danjon F, Reubens B (2008) Assessing and analyzing 3D architecture of woody root systems, a review of methods and applications in tree and soil stability, resource acquisition and allocation. Plant Soil 303:1–34

    CAS  Google Scholar 

  • Danjon F, Sinoquet H, Godin C, Colin F, Drexhage M (1999b) Characterisation of structural tree root architecture using 3D digitising and AMAPmod software. Plant Soil 211:241–258

    CAS  Google Scholar 

  • Di Iorio A, Lasserre B, Scippa GS, Chiatante D (2005) Root system architecture of Quercus pubescens trees growing on different sloping conditions. Ann Bot 95:351–361

    PubMed  Google Scholar 

  • Di Laurenzio L, Wysockadiller J, Malamy JE, Pysh L, Helariutta Y, Freshour G, Hahn MG, Feldmann KA, Benfey PN (1996) The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86:423–433

    PubMed  Google Scholar 

  • Ding Z, Friml J (2010) Auxin regulates distal stem cell differentiation in Arabidopsis roots. Proc Natl Acad Sci USA 107:12046–12051

    PubMed Central  CAS  PubMed  Google Scholar 

  • Doerner P, Jørgensen J-E, You R, Steppuhn J, Lamb C (1996) Control of root growth and development by cyclin expression. Nature 380:520–523

    CAS  PubMed  Google Scholar 

  • Draye X. 2008. Xavier Draye’s profile. http://www.uclouvain.be/en-30461. Accessed 16 June 2009

  • Dubrovsky JG, Gambetta GA, Hernadez-Barrera A, Shishkova S, Gonzalez I (2006) Lateral root initiation in Arabidopsis: developmental window, spatial patterning, density and predictability. Ann Bot 97:903–915

    PubMed Central  CAS  PubMed  Google Scholar 

  • Eghball B, Settimi JR, Maranville JW, Parkhurst AM (1993) Fractal analysis for morphological description of corn roots under nitrogen stress. Agron J 85:287–289

    CAS  Google Scholar 

  • Fang S, Yan X, Liao H (2009) 3D reconstruction and dynamic modeling of root architecture in situ and its application to crop phosphorus research. Plant J 60:1096–1108

    CAS  PubMed  Google Scholar 

  • Fitter AH, Stickland (1991) Architectural analysis of plant root systems 2. Influence of nutrient supply on architecture in contrasting plant species. New Phytol 118:383–389

    Google Scholar 

  • Fitter AH, Stickland TR (1992) Fractal characterization of root system architecture. Funct Ecol 6:632–635

    Google Scholar 

  • French A, Ubeda-Tomas S, Holman TJ, Bennett MJ, Pridmore T (2009) High-throughput quantification of root growth using a novel image-analysis tool. Plant Physiol 150:1784–1795

    PubMed Central  CAS  PubMed  Google Scholar 

  • Friml J, Benkova E, Blilou I, Wisniewska J, Hamann T, Ljung K, Woody S, Sandberg G, Scheres B, Jurgens G, Palme K (2002a) AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108:661–673

    CAS  PubMed  Google Scholar 

  • Friml J, Wisniewska J, Benkova E, Mendgen K, Palme K (2002b) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809

    PubMed  Google Scholar 

  • Gahoonia TS, Nielsen NE (2004) Root traits as tools for creating phosphorus efficient crop varieties. Plant Soil 260:47–57

    Google Scholar 

  • Gan Y, Bernreiter A, Filleur S, Abram B, Forde BG (2012) Overexpressing the ANR1 MADS-box gene in transgenic plants provides new insights into its role in the nitrate regulation of root development. Plant Cell Physiol 53:1003–1016

    CAS  PubMed  Google Scholar 

  • Gregory PJ (2006) Plant roots: their growth, activity, and interaction with soils. Blackwell Publishing, Oxford

    Google Scholar 

  • Gregory PJ, Hutchison DJ, Read DB, Jenneson PM, Gilboy WB, Morton EJ (2003) Non-invasive imaging of roots with high resolution X-ray micro-tomography. Plant Soil 255:351–359

    CAS  Google Scholar 

  • Gruber BD, Giehl RF, von Friedel S, Wiren N (2013) Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol 163:161–179

    PubMed Central  CAS  PubMed  Google Scholar 

  • Heeraman DA, Hopmans JW, Clausnitzer V (1997) Three dimensional imaging of plant roots in situ with X-ray computed tomography. Plant Soil 189:167–179

    CAS  Google Scholar 

  • Henry A, Gowda VRP, Torres RO, McNally KL, Serraj R (2011) Variation in root system architecture and drought response in rice (Oryza sativa): phenotyping of the OryzaSNP panel in rainfed lowland fields. Field Crops Research 120:205–214

    Google Scholar 

  • Hill JO, Simpson RJ, Moore AD, Chapman DF (2006) Morphology and response of roots of pasture species to phosphorus and nitrogen nutrition. Plant Soil 286:7–19

    CAS  Google Scholar 

  • Himanen K, Boucheron E, Vanneste S, de Almeida Engler J, Inze D, Beeckman T (2002) Auxin-mediated cell cycle activation during early lateral root initiation. Plant Cell 14:2339–2351

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hutchison CE, Li J, Argueso C, Gonzalez M, Lee E, Lewis MW, Maxwell BB, Perdue TD, Schaller GE, Alonso JM, Ecker JR, Kieber JJ (2006) The Arabidopsis histidine phosphotransfer proteins are redundant positive regulators of cytokinin signaling. Plant Cell 18:3073–3087

    PubMed Central  CAS  PubMed  Google Scholar 

  • International Atomic Energy Agency (2006) Mutational analysis of root characters in food plants. International Atomic Energy Agency, Vienna

    Google Scholar 

  • Ioio RD, Linhares FS, Scacchi E, Casamitjana-Martinez E, Heidstra R, Costantino P, Sabatini S (2007) Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr Biol 17:678–682

    Google Scholar 

  • Ishikawa H, Evans ML (1997) Novel software for analysis of root gravitropism: comparative response patterns of Arabidopsis wild-type and axr1 seedlings. Plant, Cell Environ 20:919–928

    CAS  Google Scholar 

  • Iwamoto A, Kondo E, Fujihashi H, Sugiyama M (2013) Kinematic study of root elongation in Arabidopsis thaliana with a novel image-analysis program. J Plant Res 126:187–192

    PubMed  Google Scholar 

  • Iyer-Pascuzzi AS, Symonova O, Mileyko Y, Hao Y, Belcher H, Harer J, Weitz JS, Benfey PN (2010) Imaging and analysis platform for automatic phenotyping and trait ranking of plant root systems. Plant Physiol 152:1148–1157

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jain A, Poling MD, Karthikeyan AS, Blakeslee JJ, Peer WA, Titapiwatanakun T, Murphy AS, Raghothama KG (2007) Differential effects of sucrose and auxin on localized phosphate deficiency-induced modulation of different traits of root system architecture in Arabidopsis. Plant Physiol 144:232–247

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kaspar TC, Bland WL (1992) Soil temperature and root growth. Soil Sci 154:290–299

    Google Scholar 

  • Kurup S, Runions J, Kohler U, Laplaze L, Hodge S, Haseloff J (2005) Marking cell lineages in living tissues. Plant J 42:444–453

    CAS  PubMed  Google Scholar 

  • Laplaze L, Parizot B, Baker A, Ricaud L, Martiniere A, Auguy F, Franche C, Nussaume L, Bogusz D, Haseloff J (2005) GAL4-GFP enhancer trap lines for genetic manipulation of lateral root development in Arabidopsis thaliana. J Exp Bot 56:2433–2442

    CAS  PubMed  Google Scholar 

  • Laplaze L, Benkov E, Casimiro I, Maes L, Vanneste S, Swarup R, Weijers D, Calvo V, Parizot B, Herrera-Rodriguez MB, Offringa R, Graham N, Doumas P, Firml J, Bougsz D, Beeckman T, Bennett M (2007) Cytokinins act directly on lateral root founder cells to inhibit root initiation. Plant Cell 19:3889–3900

    PubMed Central  CAS  PubMed  Google Scholar 

  • Laskowski M (2013) Lateral root initiation is a probabilistic event whose frequency is set by fluctuating levels of auxin response. J Exp Bot 64:2609–2617

    CAS  PubMed  Google Scholar 

  • Linkohr BI, Williamson LC, Fitter AH, Leyser HMO (2002) Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant J 29:751–760

    CAS  PubMed  Google Scholar 

  • Lontoc-Roy M, Dutilleul P, Prasher SO, Han L, Smith DL (2005) Computed tomography scanning for three-dimensional imaging and complexity analysis of developing root systems. Can J Bot 83:1434–1442

    Google Scholar 

  • Lynch J (1995) Root Architecture and Plant Productivity. Plant Physiol 109:7–13

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mackay AD, Barber SA (1984) Soil temperature effects on root growth and phosphorus uptake by corn. Soil Sci Soc Am J 48:818–823

    CAS  Google Scholar 

  • Mairhofer S, Zappala S, Tracy SR, Sturrock C, Bennett M, Mooney SJ, Pridmore T (2012) RooTrak: automated recovery of three-dimensional plant root architecture in soil from X-ray microcomputed tomography images using visual tracking. Plant Physiol 158:561–569

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mairhofer S, Zappala S, Tracy S, Sturrock C, Bennett MJ, Mooney SJ, Pridmore TP (2013) Recovering complete plant root system architectures from soil via X-ray μ-Computed Tomography. Plant Methods 9:8. doi:10.1186/1746-4811-9-8

    PubMed Central  PubMed  Google Scholar 

  • Malamy JE, Benfey PN (1997) Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124:33–44

    CAS  PubMed  Google Scholar 

  • Mandelbrot B (1975) Les Objets Fractals: Forme Hasard et Dimension. Flammarion, Paris

    Google Scholar 

  • Manschadi AM, Christopher J, deVoil P, Hammer GL (2006) The role of root architectural traits in adaptation of wheat to water-limited environments. Funct Plant Biol 33:823–837

    CAS  Google Scholar 

  • Manschadi AM, Hammer GL, Christopher JT, deVoil P (2008) Genotypic variation in seedling root architectural traits and implications for drought adaptation in wheat (Triticum aestivum L.). Plant Soil 303:115–129

    CAS  Google Scholar 

  • Miller ND, Parks BM, Spalding EP (2007) Computer-vision analysis of seedling responses to light and gravity. Plant J 52:374–381

    CAS  PubMed  Google Scholar 

  • Mooney SJ (2002) Three-dimensional visualization and quantification of soil macroporosity and water flow patterns using computed tomography. Soil Use Manag 18:142–151

    Google Scholar 

  • Mooney SJ, Pridmore TP, Helliwell J, Bennett MJ (2012) Developing X-ray computed tomography to non-invasively image 3-D root systems architecture in soil. Plant Soil 352:1–22

    CAS  Google Scholar 

  • Nadezhdina N, Čermák J (2003) Instrumental methods for studies of structure and function of root systems of large trees. J Exp Bot 54:1511–1521

    CAS  PubMed  Google Scholar 

  • Nakamura A, Higuchi K, Goda H, Fujiwara MT, Sawa S, Koshiba T, Shimada Y, Yoshida S (2003) Brassinolide induces IAA5, IAA19, and DR5, a synthetic auxin response element in Arabidopsis, implying a cross talk point of brassinosteroid and auxin signaling. Plant Physiol 133:1843–1853

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nielsen KL, Lynch JP, Weiss HN (1997) Fractal geometry of bean root systems: correlation between spatial and fractal dimension. Amer J Bot 84:26–33

    CAS  Google Scholar 

  • Nielsen KL, Miller CR, Beck D, Lynch JP (1999) Fractal geometry of root systems: field observations of contrasting genotypes of common bean (Phaseolus vulgaris L.) grown under different phosphorus regimes. Plant Soil 206:181–190

    Google Scholar 

  • Ohashi-Ito K, Bergmann DC (2007) Regulation of the Arabidopsis root vascular initial population by LONESOME HIGHWAY. Development 134:2959–2968

    PubMed Central  CAS  PubMed  Google Scholar 

  • Oppelt AL, Kurth W, Dzierzon H, jentschke G, Godbold DL (2000) Structure and fractal dimensions of root systems of four co-occurring fruit tree species from Botswana. Ann For Sci 57:463–475

    Google Scholar 

  • Ottenschläger I, Wolff P, Wolverton C, Bhalerao RP, Sandberg G, Ishikawa H, Evans M, Palme K (2003) Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proc Natl Acad Sci USA 100:2987–2991

    PubMed Central  PubMed  Google Scholar 

  • Peret B, Clement M, Nussaume L, Desnos T (2011) Root developmental adaptation to phosphate starvation: better safe than sorry. Trends Plant Sci 16:442–450

    CAS  PubMed  Google Scholar 

  • Perret JS, Al-Belushi ME, Deadman M (2007) Non-destructive visualization and quantification of roots using computed tomography. Soil Biol Biochem 39:391–399

    CAS  Google Scholar 

  • Pierret A, Capowiez Y, Moran CJ, Kretzschmar A (1999) X-ray computed tomography to quantify tree rooting spatial distributions. Geoderma 90:307–326

    Google Scholar 

  • Pierret A, Latchackak K, Chathanvongsa P, Sengtaheuanghoung O, Valentin C (2007) Interactions between root growth, slope and soil detachment depending on land use: a case study in a small mountain catchment of Northern Laos. Plant Soil 301:51–64

    CAS  Google Scholar 

  • Petersson SV, Johansson AI, Kowalczyk M, Makoveychuk A, Wang JY, Moritz T, Grebe M, Benfey PN, Sandberg G, Jung K (2009) An auxin gradient and maximum in the Arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis. Plant Cell 21:1659–1668

    PubMed Central  CAS  PubMed  Google Scholar 

  • Playsted CWS, Johnston ME, Ramage CM, Edwards DG, Cawthray GR, Lambers H (2006) Functional significance of dauciform roots: exudation of carboxylates and acid phosphatase under phosphorus deficiency in Caustis blakei (Cyperaceae). New Phytol 170:491–500

    CAS  PubMed  Google Scholar 

  • Pound MP, French AP, Atkinson JA, Wells DM, Bennett MJ, Pridmore T (2013) RootNav: navigating images of complex root architectures. Plant Physiol 162:1802–1814

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pregitzer KS, deforest JL, Burton AJ, Hendrick RL (2002) Fine root architecture of nine northern American trees. Ecol Monogr 72:293–309

    Google Scholar 

  • Qi X, Qi J, Wu Y (2007) RootLM: a simple color image analysis program for length measurement of primary roots in Arabidopsis. Plant Root 1:10–16

    Google Scholar 

  • Rahman A, Amakawa T, Goto N, Tsurumi S (2001) Auxin is a positive regulator for ethylene-mediated response in the growth of Arabidopsis roots. Plant Cell Physiol 42:301–307

    CAS  PubMed  Google Scholar 

  • Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P, Scheres B (1999) An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99:463–472

    CAS  PubMed  Google Scholar 

  • Sabatini S, Heidstra R, Wildwater M, Scheres B (2003) SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. Genes Develop 17:354–358

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shan LS, Li Y, Ren W, Su SP, Dong QL, Geng DM (2013) Root architecture of two desert plants in central Hexi Corridor of Northwest China. Chinese J Appl Ecol 24:25–31

    Google Scholar 

  • Shane MW, Cawthray GR, Cramer MD, Kuo J, Lambers H (2006) Specialized ‘dauciform’ roots of Cyperaceae are structurally distinct, but functionally analogous with ‘cluster’ roots. Plant, Cell Environ 29:1989–1999

    CAS  Google Scholar 

  • Shaul O, Mironov V, Burssens S, Van Montagu M, Inzé D (1996) Two Arabidopsis cyclin promoters mediate distinctive transcriptional oscillation in synchronized tobacco BY-2 cells. Proc Natl Acad Sci USA 93:4868–4872

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shen J, Li C, Mi G, Li L, Yuan L, Jiang R, Zhang F (2013) Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China. J Exp Bot 64:1181–1192

    CAS  PubMed  Google Scholar 

  • Smit AL, Bengough AG, Engels C, van Noordwijk M, Pellerin S, van de Geijn SC (2000) Root methods: a handbook. Springer-Verlag, Berlin

    Google Scholar 

  • Spalding EP (2009) Phytomorph. http://phytomorph.wisc.edu/. Accessed 16 June 2009

  • Stepanova AN, Yun J, Likhacheva AV, Aonso JM (2007) Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell 19:2169–2185

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stöhr C, Stremlau S (2006) Formation and possible roles of nitric oxide in plant roots. J Exp Bot 57:463–470

    PubMed  Google Scholar 

  • Sugimoto K, Jiao Y, Meyerowitz EM (2010) Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Develop Cell 18:463–471

    CAS  Google Scholar 

  • Sun H-L, Li S-C, Xiong W-L, Yang Z-R, Cui B-S, Yang T (2008) Influence of slope on root system anchorage of Pinus yunnanensis. Ecol Engin 32:60–67

    Google Scholar 

  • Swarup R, Kramer EM, Perry P, Knox K, Leyser HMO, Haseloff J, Beemster GTS, Bhalerao R, Bennett MJ (2005) Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. Nat Cell Biol 7:1057–1065

    CAS  PubMed  Google Scholar 

  • Tatsumi J, Yamauchi A, Kono Y (1989) Fractal analysis of plant root systems. Ann Bot 64:499–503

    Google Scholar 

  • Tracy S, Black C, Roberts J, Mooney S (2010a) Visualising the effect of compaction on root architecture in soil using X-ray Computed Tomography.In: 19th World Congress of Soil Science, Soil Solutions for a Changing World. 1–6 August 2010, Brisbane, Australia

  • Tracy SR, Roberts JA, Black CR, McNeill A, Davidson R, Mooney SJ (2010b) The x-factor: visualizing undisturbed root architecture in soils using x-ray computed tomography. J Exp Bot 61:311–313

  • Tracy SR, Black CR, Roberts JA, McNeill A, Davidson R, Tester M, Samec M, Korosak D, Sturrock C, Mooney SJ (2012a) Quantifying the effect of soil compaction on three varieties of wheat (Triticum aestivum L.) using X-ray micro computed tomography (CT). Plant Soil 353:195–208

  • Tracy SR, Black CR, Roberts JA, Sturrock C, Mairhofer S, Craigon J, Mooney S (2012b) Quantifying the impact of soil compaction on root system architecture in tomato (Solanum lycopersicum) by X-ray micro-computed tomography. Ann Bot 110:511–519

  • Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–1971

    PubMed Central  CAS  PubMed  Google Scholar 

  • van der Weele CM, Jiang HS, Palaniappan KK, Ivanov VB, Palaniappan K, Baskin TI (2003) A new algorithm for computational image analysis of deformable motion at high spatial and temporal resolution applied to root growth: roughly uniform elongation in the meristem and also, after an abrupt acceleration, in the elongation zone. Plant Physiol 132:1138–1148

    PubMed Central  PubMed  Google Scholar 

  • Vidal EA, Araus V, Lu C, Parry G, Green PJ, Coruzzi GM, Gutierrez RA (2010) Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana. Proc Natl Acad Sci USA 107:4477–4482

    PubMed Central  CAS  PubMed  Google Scholar 

  • Waki T, Miyashima S, Nakanishi M, Ikeda Y, Hashimoto T, Nakajima K (2013) A GAL4-based targeted activation tagging system in Arabidopsis thaliana. Plant J 73:357–367

    CAS  PubMed  Google Scholar 

  • Walk TC, Van Erp E, Lynch JP (2004) Modelling applicability of fractal analysis to efficiency of soil exploration by roots. Ann Bot 94:119–128

    PubMed Central  PubMed  Google Scholar 

  • Walter A, Silk WK, Schurr U (2000) Effect of soil pH on growth and cation deposition in the root tip of Zea mays L. J Plant Growth Regul 19:65–76

    CAS  PubMed  Google Scholar 

  • Walter A, Spies H, Terjung S, Küsters R, Kirchgeßner N, Schurr U (2002) Spatio-temporal dynamics of expansion growth in roots: automatic quantification of diurnal course and temperature response by digital image sequence processing. J Exp Biol 53:689–698

    CAS  Google Scholar 

  • Wang Z, Guo D, Wang X, Gu J, Mei L (2006) Fine root architecture, morphology, and biomass of different branch orders of two Chinese temperate tree species. Plant Soil 288:155–171

    CAS  Google Scholar 

  • Wang H, Siopongco J, Wade LJ, Yamauchi A (2009) Fractal analysis on root systems of rice plants in response to drought stress. Environ Exp Bot 65:338–344

    Google Scholar 

  • White PJ, George TS, Dupuy LX, Karley AJ, Valentine TA, Wiesel L, Wishart J (2013) Root traits for infertile soils. Front Plant Sci 4:193. doi:10.3389/fpls.2013.00193

    PubMed Central  PubMed  Google Scholar 

  • Willemsen V, Friml J, Grebe M, van de Toorn A, Palme K, Scheres B (2003) Cell polarity and PIN protein positioning in Arabidopsis require STEROL METHYLTRANSFERASE1 function. Plant Cell 15:612–625

    PubMed Central  CAS  PubMed  Google Scholar 

  • Williamson LC, Ribrioux SPCP, Fitter AH, Leyser HMO (2001) Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol 126:875–882

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wu C, Wei X, Sun H-L, Wang Z-Q (2005) Phosphate availability alters lateral root anatomy and root architecture of Fraxinus mandshurica rupr. seedlings. J Integ Plant Biol 47:292–301

    CAS  Google Scholar 

  • Wysocka-Diller JW, Helariutta Y, Fukaki H, Malamy JE, Benfey PN (2000) Molecular analysis of SCARECROW function reveals a radial patterning mechanism common to root and shoot. Development 127:595–603

    CAS  PubMed  Google Scholar 

  • Zhang H, Forde BG (1998) An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279:407–409

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Soo-Un Kim in Seoul National University for reviewing the manuscript. This work is supported by the project of public benefits in China (No. 201503221) and the open fund in the Institute of Root Biology, Yangtze University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chu Wu.

Additional information

Project funding: This work is supported by the project of public benefits in China (No. 201503221) and the open fund in the Institute of Root Biology, Yangtze University.

The online version is available at http://www.springerlink.com

Corresponding editor: Chai Ruihai

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Jb., Zhang, Xj. & Wu, C. Advances in experimental methods for root system architecture and root development. J. For. Res. 26, 23–32 (2015). https://doi.org/10.1007/s11676-015-0017-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-015-0017-0

Keywords

Profiles

  1. Chu Wu