Skip to main content
Log in

Carbon stock in Korean larch plantations along a chronosequence in the Lesser Khingan Mountains, China

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Carbon (C) dynamics are central to understanding ecosystem restoration effects within the context of Grain for Green Project (GGP). GGP stared in China since 2003 to improve the environment. Despite its importance, how total forest ecosystem C stock (FECS) develops following land-use changes from cropland to plantation is poorly understood, in particular the relationship of C allocation to pools. We quantified C pools in a chronosequence ranging from 0 to 48 years, using complete above- and below-ground harvests based on detailed field inventory. Stands were chosen along a succession sequence in managed plantations of Korean larch (Larix olgensis Henry.), a native planting species in the Lesser Khingan Mountains, Northeast of China. The FECS of Korean larch plantation (KLP) were dynamic across stand development, changing from 88.2 Mg·ha−1 at cropland, to 183.9 Mg·ha−1 as an average of forest C from 7-through 48-year-old plantation. In a 48-year-old mature KLP, vegetation comprises 48.63% of FECS and accounts for 67.66% of annual net C increment (ANCI). Soil is responsible for 38.19% and 13.53% of those, and with the remainders of 13.18% and 18.81% in down woody materials. Based on comparisons of our estimate to those of others, we conclude that afforestation of Korean larch plantation is a valid approach to sequester carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrien CF, David JPM, Evan HD, John L, Kirsten SH, Robert BJ, Hyun SK, Roser M, Heather RM, Ram O, Jeffrey SP, William HS. 2006. Progressive nitrogen limitation of ecosystem processes under elevated CO2 in a warm-temperature forest. Ecology, 87(1): 15–25.

    Article  Google Scholar 

  • Albaugh TJ, Allen HL, Doughtery PM, Johnsen KH. 2004. Long term growth responses of loblolly pine to optimal nutrient and water resource availability. Forest Ecol Manag, 192: 3–19.

    Article  Google Scholar 

  • Bechtold WA, Patterson PL (Eds.). 2005. The enhanced forest inventory and analysis program—national sampling design and estimation procedures. Gen. Tech. Rep. SRS-80. US Department of Agriculture, Forest Service, Southern Research Station, Asheville, NC.

    Google Scholar 

  • Bert D, Danjon F. 2006. Carbon concentration variations in the roots, stem and crown of mature Pinus pinaster (Ait.). Forest Ecol Manag, 222: 279–295.

    Article  Google Scholar 

  • Birdsey RA, Lewis GM. 2003. Carbon in U.S. forests and wood products, 1987–1997: state-by-state estimates. Gen. Tech. Rep. NE-310. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northeastern Research Station. 42 p

    Google Scholar 

  • Bonan GB. 2008. Forests and climate change: forcing, feedbacks, and the climate benefits of forests. Science, 320(5882): 1444–1449.

    Article  CAS  PubMed  Google Scholar 

  • Bradford JB, Weishampel P, Smith ML, Kolka R, Birdsey RA, Ollinger SV, Ryan MG. 2009. Detrital carbon pools in temperate forests: magnitude and potential for landscape-scale assessment. Can J For Res, 39: 802–813.

    Article  CAS  Google Scholar 

  • Brown S, Swingland IR, Hanbury TR, Prance GT, Myers N. 2002. Changes in the use and management of forests for abating carbon emissions: issues and challenges under the Kyoto Protocol. Philos. Trans. Math Phys Eng Sci, 360(1797): 1593–1606.

    Article  CAS  Google Scholar 

  • Brown S. 2002. Measuring, monitoring, and verification of carbon benefits for forest-based projects. Phil Trans R Soc London Ser A: Math Phys Eng Sci, 360: 1669–1683.

    Article  CAS  Google Scholar 

  • Canadell JG, Le QC, Raupach MR, Field CB, Buitenhuis ET, Ciais P, Conway TJ, Gillett NP, Houghton RA, Marland G. 2007. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks Proc. Natl Acad Sci, 104(47): 66–70.

    Article  Google Scholar 

  • Cao W, Li JY. 2007. Flora and distribution in Lesser Khingan Mountains, China. Beijing: Science Press (In Chinese)

    Google Scholar 

  • Carolina MR, Belén FS. 2005. Natural revegetation on topsoiled mining-spoils according to the exposure. Acta Oecologica, 28: 231–238.

    Article  Google Scholar 

  • Catharina JE, Schulp GN, Peter HV, Rein WW. 2008. Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories. Forest Ecol Manag, 256: 482–490.

    Article  Google Scholar 

  • Chastain JRA, Currie WS, Townsend PA. 2006. Carbon sequestration and nutrient cycling implications of the evergreen understory layer in Appalachian forests. Forest Ecol Manag, 231: 63–77.

    Article  Google Scholar 

  • Chen CG, Zhu JF. 1989. Biomass manual of main trees in northeastern China. Beijing: China Forestry Press, 528 p (In Chinese)

    Google Scholar 

  • Chen XL. 2003. Researches on carbon sequestration functions of main forest types in northern China. Doctoral Thesis: Beijing Forestry University (In Chinese with English abstract)

    Google Scholar 

  • David MS, Bruce CL, Matthew JK, Mark SAP. 1997. The Practice of Silviculture: Applied Forest Ecology. New York, NY: John Wiley & Sons, Inc..

    Google Scholar 

  • DeGryze S, Six J, Paustian K, Morris SJ, Paul EA, Merckx R. 2004. Soil organic carbon pool changes following land-use conversions. Global Change Biology, 10: 1120–1132.

    Article  Google Scholar 

  • Drewry JJ, Cameron KC, Buchan GD. 2008. Pasture yield and soil physical property responses to soil compaction from treading and grazing — a review. Aust J Soil Res, 46: 237–256.

    Article  Google Scholar 

  • Du HM, Wang C, Gao HZ. 2009. Carbon-sink function of artificial Larix principis — rupprechtii plantation. Chinese Journal of Eco-Agriculture, 17(4): 756–759. (In Chinese with English abstract)

    Article  CAS  Google Scholar 

  • Dixon RK, Brown S, Houghton RA. 1994. Carbon pols and flux of global forest ecosystems. Science, 263: 185–190.

    Article  CAS  PubMed  Google Scholar 

  • Erb KH. 2004. Land-use related changes in aboveground carbon stocks of Austrias terrestrial ecosystems. Ecosystems, 7: 563–572.

    Article  Google Scholar 

  • FAO. 2010. Global forest resources assessment. FAO Forestry Paper 163. FAO, Rome

    Google Scholar 

  • Feng RF, Yang WQ, Zhang J. 2006. Artificial forest management for global change mitigation. Acta Ecologica Sinica, 26(11): 3870–3877 (In Chinese with English abstract).

    CAS  Google Scholar 

  • Grace J. 2004. Understanding and managing the global carbon cycle. J Ecol, 92(2): 189–202.

    Article  CAS  Google Scholar 

  • Goodale CL, Apps MJ, Birdsey RA, Field CB, Heath LS, Houghton RA, Jenkins JC, Kohlmaier GH, Kurz W, Liu SR, Nabuurs, GJ, Nilsson S, Shvidenko AZ. 2002. Forest carbon sinks in the Northern Hemisphere. Ecol Appl, 12: 891–899.

    Article  Google Scholar 

  • Gorte RW. 2009. Carbon Sequestration in Forests. Congressional Research Service [online] [viewed on September 12, 2011]. Available on the Internet: http://www.fas.org/sgp/crs/misc/RL31432.pdf

    Google Scholar 

  • Guo LB, Gifford RM. 2002. Soil carbon stocks and land use change: a meta analysis. Global Change Biology, 8: 345–360.

    Article  Google Scholar 

  • Heath LS, Smith JE, Skog KE, Nowak DJ, Woodall CW. 2011. Managed forest carbon estimates for the US greenhouse gas inventory, 1990–2008. Journal of Forestry, 109(3): 167–173.

    Google Scholar 

  • Heleen AD, Sheila K. 1999. Carbon stocks in Norwegian forest soils and effects of forest management on carbon storage. Rapport fra skogforskningen (Supplement 14): 52 s.

    Google Scholar 

  • Hooker TD, Compton JE. 2003. Forest ecosystem carbon and nitrogen accumulation during the first century after agricultural abandonment. Ecological Applications, 13: 299–313.

    Article  Google Scholar 

  • Hudiburg T, Law B, Turner DP, Campbell J, Donato D, Duane M. 2009. Carbon dynamics of Oregon and Northern California forests and potential land-based carbon storage. Ecological Applications, 19(1):163–180.

    Article  PubMed  Google Scholar 

  • IPCC. 2006. IPCC Guidelines for National Greenhouse Gas Inventories, Vol.2. Edited by S Eggleston, L Buendia, K Miwa, T Ngara and K Tanabe (Japan: IGES). Available at: www.ipcc-nggip.iges.or.jp/public/2006gl/index.html (26 Sep. 2010)

  • Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA. 2007. How strongly can forest management influence soil carbon sequestration?. Geoderma, 137: 253–268.

    Article  CAS  Google Scholar 

  • Jiang YL, Zhou GS. 2002. Carbon balance of Larix gmelinii forest and impacts of management practices. Acta Phytoecologica Sinica, 26(3): 317–322. (In Chinese with English abstract)

    CAS  Google Scholar 

  • Johnson MG, Kern JS. 2003. Quantifying the organic carbon held in forested soils of the United States and Puerto Rico. In: Kimble JM, Heath LS, Birdsey RA, Lal R (Eds.), The Potential of U.S. Forest Soils to Sequester Carbon and Mitigate the Greenhouse Effect. Boca Raton, FL: CRC Press, pp. 47–72.

    Google Scholar 

  • Johnson D, Todd D, Tolbert V. 2003. Change in ecosystem carbon and nitrogen in a Loblolly pine plantation over the first 18 years. Soil Science Society America Journal, 67: 1594–1601.

    Article  CAS  Google Scholar 

  • Jobbagy EG, Jackson RB. 2002. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10(2): 423–436.

    Article  Google Scholar 

  • John L, Sharon AB, Susan EZ, Deeya G, Rebecca R, Adrien CF, Robert BJ, Elizabeth AS, William HS. 2008. Soil carbon sequestration in a pine forest after 9 years of atmospheric CO2 enrichment. Global Change Biology, 14: 1–13.

    Google Scholar 

  • King JS, Giardina CP, Pregitzer KS, Friend AL. 2007. Biomass partitioning in red pine (Pinus resinosa) along a chronosequence in the Upper Peninsula of Michigan. Can J For Res, 37(1): 93–106.

    Article  Google Scholar 

  • Lal R. 1999. Soil management and restoration for C sequestration to mitigate the accelerated greenhouse effects. Progress in Environmental Science, 1(4): 307–326.

    CAS  Google Scholar 

  • Magnani F, Mencuccini M, Borghetti M, Berbigier P, Berninger F, Delzon S, Grelle A, Hari P, Jarvis PG, Kolari P, Kowalski AS, Lankreijer H, Law BE, Lindroth A, Loustau D, Manca G, Moncrieff JB, Rayment M, Tedeschi V, Valentini R, Grace J. 2007. The human footprint in the carbon cycle of temperate and boreal forests. Nature, 447: 849–851.

    Article  CAS  Google Scholar 

  • Man XL, Liu B, Li Y. 2010. Distribution characteristics of organic carbon, nitrogen and phosphorus in the soils of herbaceous peat swamps in the Xiaoxing’an Mountains. Journal of Beijing Forestry University, 32(6): 48–53. (In Chinese with English abstract)

    Google Scholar 

  • Meelis SMScF. 2009. Carbon dynamics of boreal mixed woods in central Canada. Lakehead University.

    Google Scholar 

  • Mund M, Kummetz E, Hein M, Bauer GA, Schulze ED. 2002. Growth and carbon stocks of a spruce in central Europe. Forest Ecol Manag, 171: 275–296.

    Article  Google Scholar 

  • Oscar JC, Russell MW, Kenneth GM. 2004. Carbon monitoring costs and their effect on incentives to sequester carbon through forestry. Mitigation and Adaptation Strategies for Global Change, 154: 273–293.

    Google Scholar 

  • Paul K, Polglase P, Nyakuengama J, Khanna P. 2002. Change in soil carbon following afforestation. Forest Ecol Manag, 168: 241–257.

    Article  Google Scholar 

  • Pibumrung P, Gajaseni N, Popan A. 2008. Profiles of carbon stocks in forest, reforestation and agricultural land, Northern Thailand. Journal of Forestry Research, 19(1): 11–18.

    Article  CAS  Google Scholar 

  • Pregitzer KS. 2003. Carbon cycling in forest ecosystems with an emphasis on belowground processes. In: The potential of U.S. forest soils to sequester carbon and mitigate the greenhouse effect. CRC Press, Boca Raton, Fla. pp. 93–107

    Google Scholar 

  • Richardson J, Björheden R, Hakkila P, Lowe AT, Smith CT (Eds.). 2002. Bioenergy from Sustainable Forestry: Guiding Principles and Practices. Kluwer Academic, Dordrecht, The Netherlands.

    Google Scholar 

  • Romanya J, Cortina J, Falloon P, Coleman K, Smith P. 2000. Modeling changes in soil organic matter after planting fast growing Pinus radiata on Mediterranean agricultural soils. Eur J Soil Sci, 51: 627–641.

    Article  Google Scholar 

  • Robert CM, Douglas GF. 1991. A review of the role of temperate forests in the global CO2 balance. Journal of the Air and Waste Management Association, 41(6): 798–807.

    Article  Google Scholar 

  • Sang WG, Su HX, Chen LZ. 2002. Coupling biomass and energy in warm temperate deciduous broad-leaved Oak (Quercus liao tungensis) forest ecosystem. Acta Phytoecologica Sinica, 26(S1): 88–92. (In Chinese with English abstract)

    Google Scholar 

  • Schwarze R, Niles JO, Olander J. 2002. Understanding and managing leakage in forest-based green house gas-mitigation projects. Philos Trans Math Phys Eng Sci, 360(1797): 1685–1704.

    Article  CAS  Google Scholar 

  • Shen ZK, Lu SP, Ai XR. 2005. Study on biomass and productivity of Larix Kaempferi Plantation. Journal of Hubei Institute for Nationalities, 23(3): 289–292. (In Chinese with English abstract)

    Google Scholar 

  • Silver WL, Kueppers LM, Lugo AE, Ostertag R, Matzek V. 2004. Carbon sequestration and plant community dynamics following reforestation of tropical pasture. Ecological Applications, 14(4): 1115–1127.

    Article  Google Scholar 

  • Skog KE, Pingoud K, Smith JE. 2004. A method countries can use to estimate changes in carbon stored in harvested wood products and the uncertainty of such estimates. Environmental Management, 33(S1): 65–73.

    Article  Google Scholar 

  • Smith JE, Heath LS. 2002. A model of forest floor carbon mass for United States forest types. USDA Forest Service, Northeastern Research Station, NE-RP-722, Newtown

    Google Scholar 

  • Square, PA Smith JE, Heath LS, Skog KE, Birdsey RA. 2006. Methods for calculating forest ecosystem and harvested carbon with standard estimates for forest types of the United States. Gen. Tech. Rep. NE-343. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northeastern Research Station. 216 p

    Google Scholar 

  • Smith JE, Heath LS. 2008. Carbon stocks and stock changes in U.S. forests. In: U.S. Department of Agriculture. U.S. Agriculture and Forestry Greenhouse Gas Inventory: 1990–2005. Technical Bulletin No. 1921. Washington, DC: Office of the Chief Economist: 65–80, C1-C7

    Google Scholar 

  • Stinson G, Kurz WA, Smyth CE, Neilson ET, Dymond CC, Metsaranta JM, Boisvenue C, Rampley GJ, Li Q, White TM, Blain D. 2011. An inventory-based analysis of Canada’s managed forest carbon dynamics, 1990 to 2008. Global Change Biology, 17: 2227–2244.

    Article  PubMed Central  Google Scholar 

  • Susan T. 2000. Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics. Ecological Applications, 10: 399–410.

    Article  Google Scholar 

  • Susan T, Enir SDC, Daniel CN, Plinio BDC, Luiz AM, David R, Teresa R, Whendee S. 2006. Dynamics of fine root carbon in Amazonian tropical ecosystems and the contribution of roots to soil respiration. Global Change Biology, 12: 217–229.

    Article  Google Scholar 

  • Tobias K, Pontus O, Oleh C, Matthias B, Katarzyna O, Curtis EW, Richard AH, Patrick H, William SK, Volker CR. 2010. Post-Soviet cropland abandonment, forest recovery, and carbon sequestration in western Ukraine. Global Change Biology, 17(3): 1335–1349.

    Google Scholar 

  • Tolunay D. 2009. Carbon concentrations of tree components, forest floor and understorey in young Pinus sylvestris stands in north-western Turkey, Scandinavian Journal of Forest Research, 24(5): 394–402.

    Article  Google Scholar 

  • UNFCCC. 2011. Land Use, Land-use Change and Forestry, Draft Decision /CMP.6 Available at: http://unfccc.int/files/meetings/cop16/application/pdf/cop16lulucf.pdf)

    Google Scholar 

  • USDA Forest Service. 2007. Forest Inventory and Analysis National Core Field Guide, version 4.0. Available at: http://www.fia.fs.fed.us/library/field-guides-methods-proc (28 Apr. 2008)

    Google Scholar 

  • USDA Forest Service. 2011. Forest inventory and analysis national core field guide; Phase 3 field guide, Down Woody Materials. Version 5.0. St. Paul, MN. Available at http://fia.fs.fed.us/library/field-guides-methods-proc/docs/ (18 Oct. 2011)

    Google Scholar 

  • USDA Forest Service, North Central Research Station, St. Paul, MN. US EPA. 2005. Inventory of U.S. Greenhouse gas emissions and sinks: 1990–2003. EPA 430-R-05-003. Available at http://yosemite.epa.gov/oar/globalwarming.nsf/content/ResourceCenterP ublicationsGHGEmissionsUSEmissionsInventory2005.html (12 Nov. 2011)

    Google Scholar 

  • U.S. Environmental Protection Agency, Office of Atmospheric Programs, Greenhouse Gas Mitigation Potential in U.S. forestry and Agriculture, EPA 430-R-05-006, Washington, DC, November 2005, Table 2-1, http://www.epa.gov/sequestration/pdf/greenhousegas2005.pdf

  • Vesterdal L, Ritter E, Gundersen P. 2002. Change in soil organic carbon following afforestation of former arable land. Forest Ecol Manag, 169: 137–147.

    Article  Google Scholar 

  • Wang CM, Shao B, Wang RN. 2010a. Carbon sequestration potential of ecosystem of two main tree species in Northeast China. Acta Ecologica Sinica, 30(7): 1764–1772. (In Chinese with English abstract).

    Google Scholar 

  • Wang YG, Li Y, Ye XH, Chu Y, Wang XP. 2010b. Profile storage of organic/inorganic carbon in soil: From forest to desert. Science of the Total Environment, 408: 1925–1931.

    Article  CAS  PubMed  Google Scholar 

  • Woodall CW, Monleon VJ. 2008. Sampling protocol, estimation, and analysis procedures for the down woody materials indicator of the FIA program. Gen. Tech. Rep. NRS-22. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station. 68 p

    Google Scholar 

  • Woodall CW, Heath LS, Smith JE. 2008. National inventories of down and dead woody material forest carbon stocks in the United States: Challenges and opportunities. Forest Ecol Manag, 256: 221–228.

    Article  Google Scholar 

  • Woodall CW, Williams MS. 2005. Sampling, estimation, and analysis procedures for the down woody materials indicator. Gen Tech Rep, NC-256.

    Google Scholar 

  • Woodbury PB, Smith JE, Heath LS. 2007. Carbon sequestration in the U.S. forest sector from 1990 to 2010. Forest Ecol Manag, 241: 14–27.

    Article  Google Scholar 

  • Woodbury PB, Heath LS, Smith JE. 2006. Land use change effects on forest carbon cycling throughout the southern USA. J Environ Qual, 35(4): 1348–1363.

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Feng ZW. 1995. Study on the biomass of Larix SPP. Forest community in the frigid-temperate zone and the temperate zone of China. Journal of norhteast forestry university, 23(1): 95–101. (In Chinese with English abstract)

    Google Scholar 

  • Wu QB, Wang XK, Duan XN, Deng LB, Lu F, Ouyang ZY, Feng ZW. 2008. Carbon sequestration and its potential by forest ecosystems in China. Acta Ecologica Sinica, 28(2): 517–524. (In Chinese with English abstract)

    CAS  Google Scholar 

  • Zerva A, Ball T, Smith KA, Mencuccini M. 2005. Soil carbon dynamics in a Sitka spruce (Picea sitchensis (Bong.) Carr.) chronosequence on a peaty gley. For Ecol Manage, 205: 227–240.

    Article  Google Scholar 

  • Zhang QZ, Wang CK. 2009. Carbon concentration variability of 10 Chinese temperate tree species. Forest Ecol Manag, 258(5): 722–727.

    Article  Google Scholar 

  • Zheng DL, Heath LS, Ducey MJ, Smith JE. 2011 Carbon changes in conterminous US forests associated with growth and major disturbances: 1992–2001. Environmental Research Letters, 6(1): 1–10.

    Article  Google Scholar 

  • Zhou GY, Liu SG, Li Z, Zhang DQ, Tang XL, Zhou CY, Yan JH, Mo JM. 2006. Old-growth forests can accumulate carbon in soils. Science, 314: 14–17.

    Article  Google Scholar 

  • Zhou YR, Yu ZL, Zhao SD. 2000. Carbon storage and budget of major Chinese forest types. Acta Phytoecologica Sinica, 24(5): 518–522 (In Chinese with English abstract).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-hong Liu.

Additional information

Project funding: This research was supported by the Special Public Interest Research and Industry Fund of Forestry (No. 200904003-1), Project of Forestry Science and Technology Research (No. 2012-07), and the Importation of Foreign Advanced Agricultural Science and Technology Program (2008-4-48).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, W., Liu, Yh., Sun, Yj. et al. Carbon stock in Korean larch plantations along a chronosequence in the Lesser Khingan Mountains, China. Journal of Forestry Research 25, 749–760 (2014). https://doi.org/10.1007/s11676-014-0523-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-014-0523-5

Keywords

Navigation