Skip to main content
Log in

Major physiological adjustments in freezing-tolerant grey tiger longicorn beetle (Xylotrechus rusticus) during overwintering period

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

1 Xylotrechus rusticus (Linnaeus) is one of the most destructive woodborers in northeast China; it damages poplar and is listed as a domestic forestry quarantine pest. Overwintering larvae were collected during October 2012 and March 2013 in Harbin, China, to quantify indicators related to the insect’s overwintering strategy and the major cryoprotectants. The supercooling points (SCPs), which ranged from −14.7°C to −2.9°C, were higher than the lethal temperatures of LT50 (−33.64°C) and LT99 (−40.17°C) after 24 h exposure., also the minimum mean daily temperature (−24.5°C) and mean monthly temperature (−18.0°C) at the sampling site in January during 2008–2012. Thus, X. rusticus is a typical freezing-tolerant insect. Glycerol serves as a major cryoprotectant for overwintering larvae, because it was the only polyol accumulated during the winter and it also had a significant negative correlation with the SCP (p= 0.033, R =0.907). The glycogen and lipid are major sources of energy and their levels decreased substantially in the middle of overwintering, when glycogen had a significant correlation with the SCP (p= 0.006, R =0.971) whereas the lipid contents did not. Moreover, inter-conversions between glycerol and glycogen, as well as mannose and glycogen, were suggested by their negative correlations. The water content did not change obviously during the winter and was not correlated with the SCP. The free amino acids in the hemolymph and the total protein contents of the bodies of larvae changed significantly during winter, although both had no correlations with the SCP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atapour M, Moharramipour S. 2009. Changes of cold hardiness, supercooling capacity, and major cryoprotectants in overwintering larvae of Chilo suppressalis (Lepidoptera: Pyralidea). Environmental Entomology, 38(1): 260–265.

    Article  CAS  PubMed  Google Scholar 

  • Andreadis SS, Eliopoulos PA, Savopoulou-Soultani M. 2012. Cold hardiness of immature and adults stages of the Mediterranean flour moth, Ephestia kuehniella. Journal of Store Products Research, 48: 132–136.

    Article  Google Scholar 

  • Bale JS. 1991. Insects at low temperature: a predictable relationship? Functional Ecology, 5: 291–298.

    Article  Google Scholar 

  • Bale JS. 1996. Insect cold hardiness: a matter of life and death. European Journal of Entomology, 93: 369–382.

    Google Scholar 

  • Bale JS. 2002. Insects and low temperature: from molecular biology to distributions and abundance. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 357: 849–862.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bemani M, Izadi H, Mahdian K, Khani A, Amin samih M. 2012. Study on the physiology of diapause, cold hardiness and supercooling point of overwintering pupae of the pistachio fruit hull borer, Arimania comaroffi. Journal of Insect Physiology, 58: 897–902.

    Article  CAS  PubMed  Google Scholar 

  • Behroozi E, Izadi H, Samih MA, Moharamipour S. 2012. Physiological strategy in overwintering larvae of pistachio white leaf borer, Ocneria terebinthina Strg. (Lepidoptera: Lymantriidae) in Rafsanjan, Iran. Italian Journal of Zoology, 79: 44–49.

    Article  Google Scholar 

  • Cao CW, Gao CQ. 2009. Experimental technique on biochemical and molecular biology of insect. China: Northeast Forestry University Press. 1–2 pp.

    Google Scholar 

  • Chen B, Kang L. 2004. Variation in cold hardiness of Liriomyza huidobrensis (Diptera: Agromyzidae) along latitudinal gradients. Physiological Ecology, 33(2): 155–164.

    Google Scholar 

  • Crosthwaite JC, Sobek S, Lyons DB, Bernards MA, Sinclair BJ. 2011. The overwintering physiology of the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae). Journal of Insect Physiology, 57: 166–173.

    Article  CAS  PubMed  Google Scholar 

  • Fields PG, Fleurat-Lessard F, Lavenseau L, Febvay G, Peypelut L, Bonnot G. 1998. The effect of cold acclimation and deacclimation on cold tolerance, trehalose and free amino acid levels in Sitophilus granarius and Cryptolestes ferrugineus (Coleoptera). Journal of Insect Physiology, 44: 955–965.

    Article  CAS  PubMed  Google Scholar 

  • Fields PG, McNeil JN. 1988. The cold hardiness of Ctenucha virginica (Lepidoptera: Arctiidae) larvae, a freezing-tolerant species. Journal of Insect Physiology, 34(4): 269–277.

    Article  Google Scholar 

  • Han RD, Sun XG, Xu YY, Zhang WG. 2005. The biochemical mechanism of cold-hardiness in overwintering larva of Dendrolimus spectabilis Butler (Lepidoptera: Lasiocampidae). Acta Ecologica Sinica, 25(6): 1352–1356.

    CAS  Google Scholar 

  • Han EN, Bauce E. 1998. Time of diapause initiation, metabolic changes and overwintering survival of the spruce bud worm Choristonura fumiferana. Ecological Entomology, 23: 160–167.

    Article  Google Scholar 

  • Han RD, Gan YL, Kong XH, Ge F. 2008. Physiological and endocrine differences between diapausing and non-diapausing larvae of the pine caterpillar Dengrolimus tabulaeformis (Lepidoptera: Lasiocampidae). Zoological Studies, 47: 96–102.

    Google Scholar 

  • Khani, A. and Moharramipour, S. 2009. Cold hardiness and supercooling capacity in the overwintering larvae of the codling moth, Cydia pomonella. Journal of Insect Science, 10(83), 1–12.

    Article  Google Scholar 

  • Koštál V, Doležal P, Rozsypal J, Moravcová M, Zahradníčková H, Šimek P. 2011. Physiological and biochemical analysis of overwintering and cold tolerance in two Central European populations of the spruce bark beetle, Ips typographus. Journal of Insect Physiology, 57: 1136–1146.

    Article  PubMed  Google Scholar 

  • Koštál V, Šimek P. 2000. Overwintering strategy in Phrrhocoris apterus (Heteroptera): the relations between life-cycle, chill tolerance and physiological adjustments. Journal of Insect Physiology, 46: 1321–1329.

    Article  PubMed  Google Scholar 

  • Kristiansen E, Wilkens C, Vincents B, Friis D, Lorentzen AB, Jenssen H, Løbner-Olesen A, Ramløv H. 2012. Hyperactive antifreeze proteins from longhorn beetles: Some structural insights. Journal of Insect Physiology, 58: 1502–1510.

    Article  CAS  PubMed  Google Scholar 

  • Laak S. 1982. Physiological adaptation to low temperature in freezing-tolerant Phyllodecta laticollis beetles. Comparative Biochemistry and Physiology Part A: Physiology, 73(4): 613–620.

    Article  Google Scholar 

  • Langer A, Hance T. 2000. Overwintering strategies and cold hardiness of two aphid parasitoid species (Hymenoptera: Braconidae: Aphidiinae). Journal of Insect Physiology, 46: 671–676.

    Article  CAS  PubMed  Google Scholar 

  • Lee RE. 1989. Insect Cold-hardiness: to freeze or not to freeze. BioScience, 39: 308–313.

    Article  Google Scholar 

  • Li BX, Chen YL, Cai HL. 2001. The Cold-hardiness of different geographical populations of the Migratory Locust, Locusta migratoria L. (Orthoptera, Acrididae). Acta Ecologica Sinica, 21(12): 2023–2030.

    Google Scholar 

  • Li JW, Ren LL, Li C and Luo YQ. 2013. Detailed observations on bark damage caused by the grey tiger long-horned beetle (Xylotrechus rusticusL.). Chinese Journal of Applied Entomology, 50(5): 1078–1081.

    Google Scholar 

  • Li NG, Zachariassen KE. 2006. Water balance and adaptation strategy in insects of Central Yakutia to extreme climatic conditions. Biology Bulletin, 33(5): 483–487.

    Article  Google Scholar 

  • Liu ZD, Gong PY, Wu KJ, Wei W, Sun JH, Li DM. 2007. Effects of larval host plants on over-wintering preparedness and survival of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidopatera, Noctuidae). Journal of Insect Physiology, 53: 1016–1026.

    Article  CAS  PubMed  Google Scholar 

  • Ma RY, Hao SG, Kong WN, Sun JH, Kang L. 2006. Cold hardiness as a factor for assessing the potential distribution of the Japanese pine sawyer Monochamus alternatus (Coleoptera: Cerambycidae) in China. Annals of Forest Science, 63: 449–456.

    Article  Google Scholar 

  • Ohtsu T, Kimura MT, Hori SH. 1992. Energy storage during reproductive diapause in the Drosophila melanogaster species group. Journal of Comparative Physiology B, 162(3): 203–208.

    Article  CAS  Google Scholar 

  • Ouyang F, Liu ZD, Yin J, Su JW, Wang CZ, Ge F. 2011. Effects of transgenic Bt cotton on overwintering characteristics and survival of Helicoverpa armigera. Journal of Insect Physiology, 57: 153–160.

    Article  CAS  PubMed  Google Scholar 

  • Payne NM. 1926. Freezing and survival of insects at low temperature. The Quarterly Review of Biology, 1(2): 270–282.

    Article  Google Scholar 

  • Pfister TD, Storey KB. 2006. Insect freeze tolerance: Roles of protein phosphatases and protein kinase A. Insect Biochemistry and Molecular Biology, 36: 18–24.

    Article  CAS  PubMed  Google Scholar 

  • Ring AR. 1982. Freezing-tolerant insects with low supercooling point. Comparative Biochemistry and Physiology Part A: Physiology, 73(4): 605–612

    Article  Google Scholar 

  • Rozsypal J, Koštál V, Zahradníčková H, Šimek P. 2013. Overwintering strategy and mechanisms of cold tolerance in the codling moth (Cydia pomonella). Plos One, 8(4): e61745.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schaefer CH, Washino RK. 1970. Synthesis of energy for overwintering in natural populations of the mosquito Culex tarsalis. Comparative Biochemistry and Physiology, 35(2): 503–506.

    Article  CAS  Google Scholar 

  • Sinclair BJ. 1999. Insect cold tolerance: how many kinds of frozen? European Journal of Entomology, 96: 157–164.

    Google Scholar 

  • Sinclair BJ. 2000. Water relations of the freeze-tolerant New Zealand alpine cockroach Celatoblatta quinquemaculata (Dictyoptera: Blattidae). Journal of Insect Physiology, 46: 869–876.

    Article  CAS  PubMed  Google Scholar 

  • Storey JM, Storey KB. 1983. Regulation of cryoprotents metabolism in the overwintering gall fly larva, Eurosta solidaginis: temperature control of glycerol and sorbitol levels. Journal of Comparative Physiology B, 149: 495–502.

    Article  CAS  Google Scholar 

  • Storey KB, McDonald DG, Booth CE. 1986. Effect of temperature acclimation on haemolymph composition in the freeze-tolerant larvae of Eurosta solidaginis. Journal of Insect Physiology, 32(10): 897–902.

    Article  CAS  Google Scholar 

  • Yohei Z, Kuerban A, Hideya Y, Shoji S, Kenji F, Hisaaki T. 2005. Comparison of cold hardiness and sugar content between diapausing and nondiapausing pupae of the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). Physiological Entomology, 30: 36–41.

    Article  Google Scholar 

  • Woodman JD. 2012. Cold tolerance of the Australian spur-throated locust, Austracris guttulosa. Journal of Insect Physiology, 58: 384–390.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-qing Luo.

Additional information

Project funding: This work was supported financially by the National Science and Technology Projects (Grant No. 2012BAD19B00).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Jw., Shi, J., Xue, Y. et al. Major physiological adjustments in freezing-tolerant grey tiger longicorn beetle (Xylotrechus rusticus) during overwintering period. Journal of Forestry Research 25, 653–659 (2014). https://doi.org/10.1007/s11676-014-0504-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-014-0504-8

Keywords

Navigation