Skip to main content
Log in

Characterization of expressed genes in the establishment of arbuscular mycorrhiza between Amorpha fruticosa and Glomus mosseae

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Arbuscular mycorrhiza (AM) formed between plant roots and fungi is one of the most widespread symbiotic associations in nature. To understand the molecular mechanisms of AM formation, we profiled 30 symbiosis-related genes expressed in Amorpha fruticosa roots colonized by Glomus mosseae and in non-mycorrhizal roots at different stages using differential-display RT-PCR (DDRT-PCR). The expressed genes were confirmed by reverse Northern blotting. Eleven fragments were sequenced and putatively identified by homologous alignment. Of the eleven AM-related genes, five were obtained at the early-stage of plant-fungus interaction and six at the later stage. Three expressed sequence tag (ESTs) sequences were found to originate from the fungi and eight from the host plant by use of PCR evaluation of gDNA of both plant and fungi. The target genes included an ATP-binding cassette sub-family transporter gene, a transposon-insertion display band, and a photosynthesis-related gene. The results provided information on the molecular mechanisms underlying the development of mycorrhizal symbiosis between woody plants and AM fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akiyama K, Matsuzaki K, Hayashi H. 2005. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature, 435(7043): 824–827.

    Article  CAS  PubMed  Google Scholar 

  • Antunes PM, Rajcan I, Goss MJ. 2006b. Specific flavonoids as interconnecting signals in the tripartite symbiosis formed by arbuscular mycorrhizal fungi, Bradyrhizobium japonicum (Kirchner) Jordan and soybean (Glycine max (L.) Merr.). Soil Biology & Biochemistry, 38: 533–543.

    Article  CAS  Google Scholar 

  • Antunes PM, Varennes A, Rajcan I, Goss MJ. 2006a. Accumulation of specific flavonoids in soybean (Glycine max (L.) Merr.) As a function of the early tripartite symbiosis with arbuscular mycorrhizal fungi and Bradyrhizobium japonicum (Kirchner) Jordan. Soil Biology & Biochemistry, 38: 1234–1242.

    Article  CAS  Google Scholar 

  • Barbour MM, Hanson DT. 2009. Stable carbon isotopes reveal dynamics of respiratory metabolism. New Phytol, 181(2):243–245.

    Article  CAS  PubMed  Google Scholar 

  • Bauer D, Muuller H, Reich J, Ahrenkiel V, Warthoe P, Strauss M. 1993. Identification of differentially expressed mRNA species by an improved display technique (DDRT-PCR). Nucleic Acids Research, 21(18): 4272–4280.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Besserer A, Puech-Pagès V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S, Portais JC, Roux C, Bécard G, Séjalon-Delmas N. 2006. Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol, 4(7): 2–6.

    Article  Google Scholar 

  • Bonfante P, Genre A. 2008. Plants and arbuscular mycorrhizal fungi: an evolutionary-developmental perspective. Trends Plant Sci, 13(9): 492–498.

    Article  CAS  PubMed  Google Scholar 

  • Bonfante P., Genre A. 2010. Mechanisms underlying beneficial plant fungus interactions in mycorrhizal symbiosis. Nat Commun, 1: 48.

    Article  PubMed  Google Scholar 

  • Bozkurt O, Unver T, Akkaya MS. 2007. Genes associated with resistance to wheat yellow rust disease identified by differential display analysis. Physiological and Molecular Plant Pathology, 71(4-6): 251–259.

    Article  CAS  Google Scholar 

  • Brechenmacher L, Weidmann S, van Tuinen D. 2004. Expression profiling of up-regulated plant and fungal genes in early and late stages of Medicago truncatula-Glomus mosseae interactions. Mycorrhiza, 14(4): 253–262.

    Article  CAS  PubMed  Google Scholar 

  • Breuninger M, Requena N. 2004. Recognition events in AM symbiosis: analysis of fungal gene expression at the early appressorium stage. Fungal Genetics and Biology, 41(8): 794–804.

    Article  CAS  PubMed  Google Scholar 

  • Brewer PB, Elizabeth AD, Ferguson BJ. 2009. Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and arabidopsis. Plant Physiol, 150(1): 482–493.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brundrett MC. 2002. Coevolution of roots and mycorrhizas of land plants. New Phytologist, 154(2): 275–304.

    Article  Google Scholar 

  • Bucher M, Wegmüller S, Drissner D. 2009. Chasing the structures of small molecules in arbuscular mycorrhizal signaling. Curr Opin Plant Biol, 12(4): 500–507.

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Fan C, Zhu H. 2009a. Antiquity and function of CASTOR and POLLUX, the twin ion channel-encoding genes key to the evolution of root symbioses in plants. Plant Physiol, 149(1): 306–317.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen CY, Huang DJ and Liu JQ. 2009b. Functions and toxicity of nickel in plants: recent advances and future prospects. Clean, 37(4-5): 304–313.

    CAS  Google Scholar 

  • Corradi N, Sanders IR. 2006. Evolution of the P-type II ATPase gene family in the fungi and presence of structural genomic changes among isolates of Glomus intraradices. BMC Evol Biol, 6: 21–22.

    Article  PubMed Central  PubMed  Google Scholar 

  • Dumbrell AJ, Nelson M, Helgason T, Dytham C. 2010. A.H. Fitter Idiosyncrasy and overdominance in the structure of natural communities of arbuscular mycorrhizal fungi: is there a role for stochastic processes. J Ecol, 98: 419–428.

    Article  Google Scholar 

  • Evelin H, Kapoor R, mGiri B. 2009. Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Annals of botany, 104(7): 1263–1280.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fabi JP, Lajolo FM, do Nascimento JRO. 2009. Cloning and characterization of transcripts differentially expressed in the pulp of ripening papaya. Scientia Horticulturae, 121(2): 159–165.

    Article  CAS  Google Scholar 

  • Fitter A.H, Helgason T. 2011. A. Hodge Nutritional exchanges in the arbuscular mycorrhizal symbiosis: implications for sustainable agriculture. Fungal Biol Rev, 25: 68–72.

    Article  Google Scholar 

  • Gomez SK, Javot H, Deewatthanawong P. 2009. Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis. BMC Plant Biol, 9: 10–11.

    Article  PubMed Central  PubMed  Google Scholar 

  • Grunwald U, Nyamsuren O, Tamasloukht M. 2004. Identification of mycorrhiza-regulated genes with arbuscule development-related expression profile. Plant Mol Biol, 55(4):553–66.

    Article  CAS  PubMed  Google Scholar 

  • Guether M, Balestrini R, Hannah M. 2008. Genome-wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus. New Phytologist, 182(1): 200–212.

    Article  Google Scholar 

  • Halary S., Malik S.B., Lildhar L., Slamovits C.H. 2011. Conserved meiotic machinery in Glomus spp., a putatively ancient asexual fungal lineage. Genome Biol Evol, 3: 950–958.

    Article  PubMed Central  PubMed  Google Scholar 

  • Harrison MJ. 1998. Development of the arbuscular mycorrhizal symbiosis. Plant Biology, 1: 360–365.

    CAS  Google Scholar 

  • Hausmann NT, Hawkes CV. 2009. Plant neighborhood control of arbuscular mycorrhizal community composition. New Phytol, 183(4): 1188–1200.

    Article  PubMed  Google Scholar 

  • Helber N, Requena N. 2008. Expression of the fluorescence markers DsRed and GFP fused to a nuclear localization signal in the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol, 177: 537–548.

    CAS  PubMed  Google Scholar 

  • Hua J, Lin X, Yin R. 2009. Effects of arbuscular mycorrhizal fungi inoculation on arsenic accumulation by tobacco (Nicotiana tabacum L.). J Environ Sci, 21(9): 1214–1220.

    Article  CAS  Google Scholar 

  • Karandashov V, Nagy R, Wegmuller S. 2004. Evolutionary conservation of a phosphate transporter in the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA, 101(16): 6285–6290.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaschuk G, Leffelaar PA, Giller KE, Alberton O. 2010. Responses of legumes to rhizobia and arbuscular mycorrhizal fungi: A meta-analysis of potential photosynthate limitation of symbioses. Soil biology & biochemistry, 42: 125–127.

    Article  CAS  Google Scholar 

  • Kistner C, Winzer T, Pitzschke A, Mulder L. 2005. Seven Lotus japonicus Genes Required for Transcriptional Reprogramming of the Root during Fungal and Bacterial Symbiosis. Plant Cell, 17(8): 2217–2229.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koch AM, Croll D, Sanders LR. 2006. Genetic variability in a population of arbuscular mycorrhizal fungi causes variation in plant growth. Ecol Lett, 9(2): 103–110.

    Article  PubMed  Google Scholar 

  • Kosuta S, Chabaud M, Dénarié J. 2003. A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD11 expression in roots of Medicago truncatula. Plant Physiol, 131(3): 952–962.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krüger C.M., Krüger, Walker, Stockinger. 2012. A. Schüßler Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol, 193: 970–984.

    Article  PubMed  Google Scholar 

  • Küster H, Vieweg MF, Manthey K. 2007. Identification and expression regulation of symbiotically activated legume genes. Phytochemistry, 68(1): 8–18.

    Article  PubMed  Google Scholar 

  • Lee J, Young JP. 2010. The mitochondrial genome sequence of the arbuscular mycorrhizal fungus Glomus intraradices isolate 494 and implications for the phylogenetic placement of Glomus. New Phytol, 183: 200–211.

    Article  Google Scholar 

  • Liu J, Blaylock LA, Endre G. 2003. Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of an arbuscular mycorrhizal symbiosis. Plant Cell, 15(90): 2106–2123.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu YJ, Zhang AN, Jia JF and Li A. 2007. Cloning of salt stress responsive cDNA from wheat and resistant analysis of differential fragment SR07 in transgenic tobacco. J Genet Genomics, 34(9): 842–849.

    Article  CAS  PubMed  Google Scholar 

  • Malloch DW, Pirozynski KA, Raven PH. 1980. Ecological and evolutionary significance of mycorrhizal symbioses in vascular plants. Ecology, 77: 2113–2118.

    CAS  Google Scholar 

  • Martin F, Gianinazzi-Pearson V. 2008. The long hard road to a completed Glomus intraradices genome. New Phytol, 180:747–750.

    Article  CAS  PubMed  Google Scholar 

  • Miransari M, Bahrami HA, Rejali F. 2009. Effects of arbuscular mycorrhiza, soil sterilization, and soil compaction on wheat (Triticum aestivum L.) nutrients uptake. Soil & Tillage Research, 104(1): 48–55.

    Article  Google Scholar 

  • Mortimer PE, Perez-Fernandea MA, Hannahalentine AJ. 2009. Arbuscular mycorrhizae affect the N and C economy of nodulated Phaseolus vulgaris (L.) during NH4+ nutrition. Soil Biology & Biochemistry, 41(10): 2115–2121.

    Article  CAS  Google Scholar 

  • Msiska Z, Morton JB. 2009. Isolation and sequence analysis of a-tubulin gene from arbuscular mycorrhizal fungi. Mycorrhiza, 19(7): 501–513.

    Article  CAS  PubMed  Google Scholar 

  • Nadimi M, Beaudet D, Forget L. 2012. Group I intron-mediated trans-splicing in mitochondria of Gigaspora rosea and a robust phylogenetic affiliation of arbuscular mycorrhizal fungi with Mortierellales. Mol Biol Evol http://dx.doi.org/10.1093/molbev/mss088.

    Google Scholar 

  • Nadimi M, Beaudet D, Forget L. 2012. Lang Group I intron-mediated trans-splicing in mitochondria of Gigaspora rosea and a robust phylogenetic affiliation of arbuscular mycorrhizal fungi with Mortierellales. Mol Biol Evol: http://dx.doi.org/10.1093/molbev/mss088.

    Google Scholar 

  • Nagy R, Drissner D, Amrhein N. 2009. Mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated. New Phytol. 181(4): 950–959.

    Article  CAS  PubMed  Google Scholar 

  • Ohtomo R, Saito M. 2005. Polyphosphate dynamics in mycorrhizal roots during colonization of an arbuscular mycorrhizal fungus. New Phytol, 167(2): 571–578.

    Article  CAS  PubMed  Google Scholar 

  • Olsson PA, Hansson MC, Burleigh SH. 2006. Effect of P availability on temporal dynamics of carbon allocation and Glomus intraradices high-affinity P transporter gene induction in arbuscular mycorrhiza. Appl Environ Microbiol, 72(6): 4115–4120.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pandit SS, Kulkarni RS, Giri AP. 2010. Expression profiling of various genes during the fruit development and ripening of mango. Plant Physiol Biochem, 48(6): 426–433.

    Article  CAS  PubMed  Google Scholar 

  • Parniske M. 2004. Molecular genetics of the arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol, 7(4):414–421.

    Article  CAS  PubMed  Google Scholar 

  • Paszkowsk U. 2006. A journey through signaling in arbuscular mycorrhizal symbioses. New Phytol, 172(1): 35–46.

    Article  Google Scholar 

  • Paungfoo-Lonhienne C, Lonhienne TG. 2008. Plants can use protein as a nitrogen source without assistance from other organisms. Proc Natl Acad Sci USA, 105(11): 4524–4529.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pitet M, Camprubí A, Calvet C, Estaún V. 2009. A modified staining technique for arbuscular mycorrhiza compatible with molecular probes. Mycorrhiza, 19(2): 125–131.

    Article  CAS  PubMed  Google Scholar 

  • Ponce MA, Bompadre MJ, Scervino JM. 2009. Flavonoids, benzoic acids and cinnamic acids isolated from shoots and roots of Italian rye grass (Lolium multiflorum Lam.) with and without endophyte association and arbuscular mycorrhizal fungus. Biochemical Systematics and Ecology, 37: 245–253.

    Article  CAS  Google Scholar 

  • Rameau C. 2010. Strigolactones, a novel class of plant hormone controlling shoot branching. Comptes Rendus Biologies, 333(4): 344–349.

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen S, Parsons AJ, Fraser K. 2008. Metabolic profiles of Lolium perenne are differentially affected by nitrogen supply, carbohydrate content, and fungal endophyte infection. Plant Physiol, 146(3): 1440–1453.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reinhardt D. 2007. Programming good relations-development of the arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol, 10(1): 98–105.

    Article  PubMed  Google Scholar 

  • Saito K, Yoshikawa M, Yano K. 2007. NUCLEOPORIN85 is required for calcium spiking, fungal and bacterial symbioses, and seed production in Lotus japonicus. Plant Cell, 19(2): 610–624.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular Cloning: A laboratory manual, 2nd edn. New York: Cold Spring Harbor Laboratory, p. 659.

    Google Scholar 

  • Sanders IR, Croll D. 2010. Arbuscular mycorrhiza: the challenge to understand the genetics of the fungal partner. Annu Rev Genet, 44:271–292.

    Article  CAS  PubMed  Google Scholar 

  • Scervino JM, Ponce MA, Erra-Bassells R. 2005. Flavonoids exhibit fungal species and genus specific effects on the presymbiotic growth of Gigaspora and Glomus. Mycol Res, 109(7): 789–794.

    Article  CAS  PubMed  Google Scholar 

  • Schenkluhn L, Hohnjec N, Niehaus K. 2010. Differential gel electrophoresis (DIGE) to quantitatively monitor early symbiosis- and pathogenesis-induced changes of the Medicago truncatula root proteome. J Proteomics, 73(4):753–768.

    Article  CAS  PubMed  Google Scholar 

  • Schüßler A, Schwarzott D, Walker C. 2010. A new fungal phylum. The Glomeromycota: phylogeny and evolution. Mycol Res, 105: 1413–1421.

    Article  Google Scholar 

  • Sedzielewska KA, Fuchs J, Temsch EM. 2011. Estimation of the Glomus intraradices nuclear DNA content. New Phytol, 192: 794–797.

    Article  CAS  PubMed  Google Scholar 

  • Smith S.E. 2011. Smith Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol, 62: 227–250.

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Barker SJ, Zhu YG. 2006. Fast moves in arbuscular mycorrhizal symbiotic signalling. Trends Plant Sci, 11(8): 369–371.

    Article  CAS  PubMed  Google Scholar 

  • Tisserant E, Kohler A, Dozolme-Seddas P.2012. The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytol, 193: 755–769.

    Article  CAS  PubMed  Google Scholar 

  • Trouvelot A, Kough JL, Gianinazzi-Pearson V. 1986. Mesure dutaux de mycorhization VA d’un systme radiculaire ayant une signification fonctionnelle. In: Gianinazzi-Pearson V, Giani-nazzi S (eds), Les mycorhizes, physiologie et genetique, INRA, Paris: 217–221.

    Google Scholar 

  • Uibopuu A, Moora M, Saks U. 2009. Differential effect of arbuscular mycorrhizal fungal communities from ecosystems along management gradient on the growth of forest understory plant species. Soil Biology & Biochemistry, 41: 2141–2146.

    Article  CAS  Google Scholar 

  • Vallino M, Greppi D, Novero M. 2009. Rice root colonisation by mycorrhizal and endophytic fungi in aerobic soil. Ann Appl Biol, 154(2): 195–204.

    Article  Google Scholar 

  • Wehner J, Antunes PM, Powell JR. 2010. Plant pathogen protection by arbuscular mycorrhizas: A role for fungal diversity? Pedobiologia, 53: 197–201.

    Article  Google Scholar 

  • Wu QS, Xia RX, Zou YN. 2006. Reactive oxygen metabolism in mycorrhizal and non-mycorrhizal citrus (Poncirus trifoliata) seedlings subjected to water stress. J Plant Physiol, 163(11): 1101–1110.

    Article  CAS  PubMed  Google Scholar 

  • Yoneyama K, Xie X, Sekimoto H. 2008. Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants. New Phytol, 179(2): 484–494.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S, Maruyama S, Nozaki H. 2010. Horizontal gene transfer by the parasitic plant Striga hermonthica. Science, 328:1128.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuqiang Song.

Additional information

Project funding: This study was supported by National Natural Science Foundation of China (31070576 and 31270535), Natural Science Foundation of Heilongjiang Province of China (No.ZD201206), Excellent Youth Foundation of Heilongjiang Province of China (No.JC201306) and High-level Talents Support Program of Heilongjiang University (Ecological Restoration Team).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, F., Li, J. & Zhang, X. Characterization of expressed genes in the establishment of arbuscular mycorrhiza between Amorpha fruticosa and Glomus mosseae . Journal of Forestry Research 25, 541–548 (2014). https://doi.org/10.1007/s11676-014-0493-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-014-0493-7

Keywords

Navigation