Skip to main content
Log in

A site dependent top height growth model for hybrid aspen

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

In this study height growth models for hybrid aspen were developed using three growth equations. The mean age of the hybrid aspen was 21 years (range 15–51 years) with a mean stand density of 946 stems ha−1 (87–2374) and a mean diameter at breast height (over bark) of 19.6 cm (8.5–40.8 cm). Site index was also examined in relation to soil type. Multiple samples were collected for three types of soil: light clay, medium clay and till. Site index curves were constructed using the collected data and compared with published reports. A number of dynamic equations were assessed for modeling top-height growth from total age. A Generalized Algebraic Difference Approach model derived by Cieszewski (2001) performed the best. This model explained 99% of the observed variation in tree height growth and exhibited no apparent bias across the range of predicted site indices. There were no significant differences between the soil types and site indices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adame P, Cañellas I, Roig S, del Río M. 2006. Modeling dominant height growth and site index curves rebollo oak (Quercus pyrenaica Willd.). Annals of Forest Science, 63: 629–940.

    Article  Google Scholar 

  • Bailey RL, Clutter JL. 1974. Base-age invariant polymorphic site curves. Forest Science, 20(2): 155–159.

    Google Scholar 

  • Beamont J-F, Ung C-H, Bernier-Cardou M. 1999. Relating site index to ecological factors in black spruce stands: Tests of hypothesis. Forest Science, 45(4): 484–491.

    Google Scholar 

  • Borders BE, Bailey RL, Ware KD. 1984. Slash pine site index from a polymorphic model by joining (splining) non polynomial segments with an algebraic difference method. Forest Science, 30(2): 411–423.

    Google Scholar 

  • Borders BE, Bailey RL, Clutter ML. 1988. Forest growth models: Parameter estimations using real growth series. In: A.R. Ek, S.R. Shirley and T.E. Burk (eds), Forest Growth Modeling and Prediction. Proceedings of the IUFRO Conference. North Central Forest Experiment Station. St. Paul. USDA Forest Service General Technical Report NC-120, 660–667.

    Google Scholar 

  • Carillo JC. 2001. A trial with fast-growing Populus species. MS. Thesis, Swedish University of Agricultural Sciences. Department of Forest Management and Products, p.21.

    Google Scholar 

  • Carmean WH. 1972. Site index curves for upland oaks in the Central States. Forest Science, 18(2): 109–120.

    Google Scholar 

  • Chen HYH, Klinka K, Kabzems RD. 1998. Height growth and site index models for trembling aspen (Populus tremuloides Michx.) in northern British Columbia. Forest Ecology and Management, 102: 137–165.

    Article  Google Scholar 

  • Christersson L. 2010. Wood production potential in poplar plantations in Sweden. Biomass and Bioenergy, 34: 1289–1299.

    Article  Google Scholar 

  • Cieszewski CJ. 2001. Three models of deriving advanced dynamic site equations demonstrated on inland Douglas-fir site curves. Canadian Journal of Forest Research, 31: 165–173.

    Article  Google Scholar 

  • Cieszewski C, Bailey RL. 2000. Generalized algebraic difference approach: Theory based derivation of dynamic site equations with polymorphism and variable asymptotes. Forest Science, 46(1): 116–126.

    Google Scholar 

  • Cieszewski C, Bella IE. 1989. Polymorphic height and site index curves for lodgepole pine in Alberta. Canadian Journal of Forest Research, 19: 1151–1160.

    Article  Google Scholar 

  • Clutter JL, Fortson JC, Pienaar LV, Brister GH, Bailey RL. 1983. Timber management: A quantitative approach. New York: John Wiley & Sons. pp. 30–62.

    Google Scholar 

  • Diaz-Marato IJ, Fernández-Parajes J, Vila-Lameiro P, Baracala-Pérez E. 2010. Site index model for natural stands of rebollo oak (Quercus pyrenaica Willd.) in Galicia, NW Iberian Peninsula. Ciencia Forestal, Santa Maria, 20(1): 57–68.

    Google Scholar 

  • Diéguez-Aranda U, Burkhart HE, Amateis RL. 2006a. Dynamic site model for Loblolly pine (Pinus taeda L.) plantations in the United States. Forest Science, 52(3): 262–272.

    Google Scholar 

  • Diéguez-Aranda U, Grandaz-Arias JA, Álvarez-Gonzáles JG, Gadow Kv. 2006b. Site quality curves for birch stands in North-Western Spain. Silva Fennica, 40(4): 631–644.

    Google Scholar 

  • Ekström G. 1926. Klassifikation av svenska åkerjordar. (Classification of Swedish soil types on farmland). Sveriges Geologiska Undersökning. Serie C. Avhandlingar och Uppsatser, 345. Årsbok 20. p. 161. (In Swedish).

    Google Scholar 

  • Elfving B. 1986a. Odlingsvärdet av björk, asp och al på nedlagd jordbruksmark i Sydsverige. Summary: The value of growing birch, aspen and alder on abandoned fields in southern Sweden. Sveriges Skogsvårdsförbunds Tidskrift, 5: 31–39. (In Swedish).

    Google Scholar 

  • Elfving B. 1986b. Ett försök med åkerplantering av hybridasp och gran nära Sundsvall. (A trial with a plantation of hybrid aspen on abandoned farmland close to the city of Sundsvall). Sveriges Skogsvårdsförbunds Tidskrift, 5: 43–45. (In Swedish).

    Google Scholar 

  • Elfving B, Kiviste A. 1997. Construction of site index equations for Pinus sylvestris L. using permanent plot data in Sweden. Forest Ecology and Management, 98: 125–134.

    Article  Google Scholar 

  • Eriksson H, Johansson U, Kiviste A. 1997. A site-index model for pure and mixed stands of Betula pendula and Betula pubescens in Sweden. Scandinavian Journal of Forest Research, 12: 49–156.

    Article  Google Scholar 

  • Fries J. 1964. Yield of Betula verrucosa Roth in Middle Sweden and Southern North Sweden. Studia Forestalia Suecica, 14: p. 305. (In Swedish with English summary).

    Google Scholar 

  • Goelz JCG, Burk TE. 1992. Development of a well behaved site index equation: Jack pine in north central Ontario. Canadian Journal of Forest Research, 22: 776–784.

    Article  Google Scholar 

  • Hägglund B. 1981. Evaluation of forest site productivity. Commonwealth Forest Bureau, Forestry Abstracts, 42(11): 515–527.

    Google Scholar 

  • Jacobsen B. 1976. Hybridasp (Populus tremula x Populus tremuloides Michx.). Summary: Hybrid aspen (Populus tremula x Populus tremuloides Michx.). Det Forstlige Forsøgsvæsen i Danmark, 34: 317–338. (In Danish).

    Google Scholar 

  • Johansson T. 1996. Site index curves for European aspen (Populus tremula L.) growing on forest land of different soils in Sweden. Silva Fennica, 30(4): 437–458.

    Google Scholar 

  • Johansson T. 1999. Biomass equations for determining fractions of pendula and pubescent birches growing on abandoned farmland and some practical implications. Biomass & Bioenergy, 16: 223–38.

    Article  Google Scholar 

  • Johnsson H. 1953. Hybridaspens ungdomsutveckling och ett försök till framtidsprognos. (Growth of young hybrid aspen and an attempt for future prognosis). Svenska Skogsvårdsföreningens Tidskrift, 51: 73–96. (In Swedish).

    Google Scholar 

  • Johnsson H. 1976. Das Produktionspotenial der Hybridaspe (Populus tremula x Populus tremuloides) in Südschweden. Die Holssucht, 11/76: 19–22. (In German).

    Google Scholar 

  • Karačić A, Verwijst T, Weih M. 2003. Above-ground woody biomass production of short-rotation Populus plantations on agricultural land in Sweden. Scandinavian Journal of Forest Research, 18: 427–437.

    Article  Google Scholar 

  • Kasanen R, Hantula J, Kurkela T. 2002. Neofabraea populi in hybrid aspen stands in Southern Finland. Scandinavian Journal of Forest Research, 17: 391–397.

    Article  Google Scholar 

  • Kiveste A, Kiveste K. 2009. Algebraic difference equations for stand height, diameter, and volume depending on stand age and site factors for Estonian state forests. International Journal of Mathematical and Computational Forestry and Natural-Resources Sciences, 1(2): 67–77.

    Google Scholar 

  • Kozak A. 1997. Effect of multicollinearity and auto correlation on the variable-exponent taper equations. Canadian Journal of Forest Research 27: 619–629.

    Article  Google Scholar 

  • Kozak A, Kozak R. 2003. Does cross validation provide additional information in the evaluation of regression models? Canadian Journal of Forest Research, 33: 976–987

    Article  Google Scholar 

  • Krumland B, Eng H. 2005. Site index systems for major young-growth forests and woodland species in northern California. California Forestry Report No. 4. California Department Forest and Fire Protection. Sacramento, CA. p. 219.

    Google Scholar 

  • Langhammer A. 1971. Neofabraea populi in plantations of hybrid aspen in Norway. Meddelser fra Norske Skogforsøksvesen, 29: 81–91. (In Norwegian).

    Google Scholar 

  • Langhammer A. 1973. Et forsøk med hybridosp i Norge. (A trial with hybrid aspen in Norway). Scientific Reports of the Agricultural University of Norway, 52(6): 1–36. (In Norwegian).

    Google Scholar 

  • Liesebach M, von Wuehlish G, Muhs HJ. 1999. Aspen for short-rotation coppice plantations on agricultural sites in Germany: Effects of spacing and rotation time on growth and biomass production of aspen progenies. Forest Ecology and Management, 121: 25–39.

    Article  Google Scholar 

  • Monserud RA. 1984. Height growth and site index curves for inland Douglasfir based on stem analysis data and forest habitat types. Forest Science, 30(4): 945–965.

    Google Scholar 

  • Møller CM. 1965. Vore skovtræarter og deres dyrkning. (Our forest trees and their management). Carlsen-Langes Legatstiftelse. Dansk skovforening. København. Denmark, 91–103. (In Danish).

    Google Scholar 

  • Newberry JD. 1991. A note on Carmean’s estimate of height from stem analysis data. Forest Science, 37: 368–369.

    Google Scholar 

  • Nord-Larsen T. 2006. Developing dynamic site index curves for European beech (Fagus sylvatica L.) in Denmark. Forest Science, 52(2): 173–181.

    Google Scholar 

  • Nord-Larsen T, Meilby H, Skovsgaard J. 2009. Site specific height growth models for six common tree species in Denmark. Scandinavian Journal of Forest Research, 24: 194–204.

    Article  Google Scholar 

  • Parresol BR, Hotvedt JE, Cao QV. 1987. A volume and taper prediction system for bald cypress. Canadian Journal of Forest Research, 17: 250–259.

    Article  Google Scholar 

  • Payandeh B. 1974. Nonlinear site index equations for several major Canadian timber species. The Forestry Chronicle, 50: 194–196.

    Google Scholar 

  • Rayner ME. 1991. Site index and dominant height growth curves for regrowth karri (Eucalyptus diversicolor F. Muell.) in south-western Australia. Forest Ecology and Management, 44: 261–283.

    Article  Google Scholar 

  • Richards FJ. 1959. A flexible growth function for empirical use. Journal of Experimental Botany, 10: 290–300.

    Article  Google Scholar 

  • Rytter L. 2006. A management regime for hybrid aspen stands combining conventional forestry techniques with early biomass harvests to exploit their rapid early growth. Forest Ecology and Management, 236: 422–426.

    Article  Google Scholar 

  • Rytter L, Stener, LG. 2005. Productivity and thinning effects in hybrid aspen (Populus tremula x P. tremuloides Michx.) stands in southern Sweden. Forestry, 78(3): 285–295.

    Article  Google Scholar 

  • Rytter L, Johansson T, Karačić A, Weih M. 2011. Orienterande studie om ett svenskt forskningsprogram för poppel. Summary: Investigation for a Swedish research program on the genus Populus. Skogforsk, Arbetsrapport No 733, Uppsala, p.148.

    Google Scholar 

  • SAS, 2006. SAS Institute Inc. Version 9.1. Cary. NC.

    Google Scholar 

  • Stener, L-G. 2002. Hybrid aspen improvement in Sweden during the period 1939–2000. In: P. Pulkinen, P. M. A. Tigerstedt and R. Viirros (eds), Aspen in Papermaking. University of Helsinki. Department of Applied Biology. Publications 5, 9–13.

    Google Scholar 

  • Tullus A, Rytter L, Tullus T, Weih M, Tullus H. 2012. Short-rotation forestry with hybrid aspen (Populus tremula L. x Populus tremuloides Michx.). Scandinavian Journal of Forest Research, 27(1): 1–20.

    Article  Google Scholar 

  • Wettstein, W. 1933. Die Kreutzungsmethode und die Bechreibung von F1 Bastarden by Populus. Zeitschrift fűr Züchtung und Allgemeine Pflanzenzüchtung, 18: 97–626. (In German).

    Google Scholar 

  • Yu Q, Tigerstedt PMA, Haapanen M. 2001. Growth and phenology of hybrid aspen clones (Populus tremula L. x Populus tremuloides Michx.). Silva Fennica, 35(1): 15–25.

    Google Scholar 

  • Zar JH. 1999. Biostatistical analysis. Englewood Cliffs, N.J: Prentice-Hall.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tord Johansson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johansson, T. A site dependent top height growth model for hybrid aspen. Journal of Forestry Research 24, 691–698 (2013). https://doi.org/10.1007/s11676-013-0365-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-013-0365-6

Keywords

Navigation