Advertisement

Journal of Forestry Research

, Volume 24, Issue 1, pp 1–14 | Cite as

Growth and form of Quercus robur and Fraxinus excelsior respond distinctly different to initial growing space: results from 24-year-old Nelder experiments

  • Christian Kuehne
  • Edgar Kublin
  • Patrick Pyttel
  • Jürgen Bauhus
Original Paper

Abstract

Initial growing space is of critical importance to growth and quality development of individual trees. We investigated how mortality, growth (diameter at breast height, total height), natural pruning (height to first dead and first live branch and branchiness) and stem and crown form of 24-year-old pedunculate oak (Quercus robur [L.]) and European ash (Fraxinus excelsior [L.]) were affected by initial spacing. Data were recorded from two replicate single-species Nelder wheels located in southern Germany with eight initial stocking regimes varying from 1,020 to 30,780 seedlings·ha−1. Mortality substantially decreased with increasing initial growing space but significantly differed among the two species, averaging 59% and 15% for oak and ash plots, respectively. In contrast to oak, the low self-thinning rate found in the ash plots over the investigated study period resulted in a high number of smaller intermediate or suppressed trees, eventually retarding individual tree as well as overall stand development. As a result, oak gained greater stem dimensions throughout all initial spacing regimes and the average height of ash significantly increased with initial growing space. The survival of lower crown class ashes also appeared to accelerate self-pruning dynamics. In comparison to oak, we observed less dead and live primary branches as well as a smaller number of epicormic shoots along the first 6 m of the lower stem of dominant and co-dominant ashes in all spacing regimes. Whereas stem form of both species was hardly affected by initial growing space, the percentage of brushy crowns significantly increased with initial spacing in oak and ash. Our findings suggest that initial stockings of ca. 12,000 seedlings per hectare in oak and 2,500 seedlings per hectare in ash will guarantee a sufficient number of at least 300 potential crop trees per hectare in pure oak and ash plantations at the end of the self-thinning phase, respectively. If the problem of epicormic shoots and inadequate self-pruning can be controlled with trainer species, the initial stocking may be reduced significantly in oak.

Keywords

spacing trial stocking self-thinning intraspecific competition qualification spatially explicit modelling generalized additive model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ammann P. 1999. Analyse unbehandelter Jungwaldbestände als Grundlage neuer Pflegekonzepte. Schweizerische Zeitung für das Forstwesen, 150: 460–470.CrossRefGoogle Scholar
  2. Ammann P. 2004. Biologische Rationalisierung am Beispiel der Esche: Erkenntnisse aus der Analyse unbehandleter Bestände. In: P. Brang (ed), Tagungsband Biologische Rationalisierung im Waldbau. Eidgenössische Forschungsanstalt WSL, Birmesdorf, pp. 93–107.Google Scholar
  3. Ammann P. 2005. Biologische Rationalisierung bei Esche, Bergahorn und Buche. Wald und Holz, 86: 29–33.Google Scholar
  4. Armand, G. 1995. Feuillus précieux: conduite des plantations en ambiance forestière. Merisier, érable sycomore, frêne, chêne rouge dAmérique. Institut pour le développement forestier, Paris.Google Scholar
  5. Assmann E. 1970. The principles of forest yield study. Oxford: Pergamon Press, 506 pp.Google Scholar
  6. Bary-Langer A, Evrard R, Gathy P. 1999. La Forêt. Liège: Du Perron, 623 pp.Google Scholar
  7. Beck O, Götsche D. 1976. Untersuchungen über das Konkurrenzverhalten von Edellaubhölzern in Jungbeständen. Forstarchiv, 47: 89–91.Google Scholar
  8. Bläsing J. 2008. Das Klima des Mosswalds. In: H. Körner (ed), Die Mooswälder — Natur- und Kulturgeschichte der Breisgauer Bucht. Freiburg: Lavori, pp. 73–94.Google Scholar
  9. Börner M, Guericke M, Leder B, Nutto L, Stähr F, Weinreich A. 2003. Erhebung qualitätsrelevanter Parameter am Einzelbaum — Aufnahmestandards für junge bis mittelalte Laubhölzer als Grundlage für wissenschaftliche Untersuchungen. Forstarchiv, 74: 275–282.Google Scholar
  10. Burschel P, Huss J. 2003. Grundriß des Waldbaus. Berlin: Parey, p. 487.Google Scholar
  11. Butin H, Kowalski T. 1983. Die natürliche Astreinigung und ihre biologischen Voraussetzungen: II. Die Pilzflora der Stieleiche (Quercus robur L.). European Journal of Forest Pathology, 13: 428–439.CrossRefGoogle Scholar
  12. Claessens H. 2002. Itinéraires sylvicoles pour la production de frênes de qualité. Les cahiers forestiers de Gembloux. Unité de gestion des Économies Forestières. Faculté des Sciences Agronomiques de Gembloux.Google Scholar
  13. Dobrowolska D, Hein S, Oosterbaan A, Skovsgaard J-P, Wagner S. 2008. Ecology and growth of European ash (Fraxinus excelsior L.). Publication of COST E42 “Growing Valuable Broadleaved Tree Species” (ValBro). Available at: http://www.valbro.uni-freiburg.de/pdf/paper_Ash.pdf [accessed 01 February 2012].
  14. Dong PH, Eder W, Muth M. 2007. Traubeneichen-Läuterungsversuche im Pfälzerwald. In: P. H. Dong (ed), Eiche im Pfälzerwald. Mitteilungen aus der Forschungsanstalt für Waldökologie und Forstwirtschaft Rheinland-Pfalz 63/07, pp. 57–77.Google Scholar
  15. Dong PH, Muth M, Roeder A. 1998. Läuterungsversuch in Eichenjungbeständen bei Oberhöhen von ca. 8 Metern. Forst und Holz, 53: 165–167.Google Scholar
  16. Èermák J. 1998. Leaf distribution in large trees and stands of the floodplain forest in southern Moravia. Tree Physiology, 18: 727–737.CrossRefGoogle Scholar
  17. Emborg, J. 1998. Understorey light conditions and regeneration with respect to the structural dynamics of a near-natural temperate deciduous forest in Denmark. Forest Ecology and Management 106: 83–95.CrossRefGoogle Scholar
  18. Food and Agriculture Organization of the United Nations 1998. World reference base for soil resources: a framework for international classification, correlation and communication. World soil resources reports 84.Google Scholar
  19. Galinski W, Witowski J, Zwieniecki M. 1994. Non-random height pattern formation in even aged Scots pine (Pinus sylvestris L.) Nelder plots as affected by spacing and site quality. Forestry, 67: 49–61.CrossRefGoogle Scholar
  20. Gaul T, Stüber V. 1996. Der Eichen-Nelder-Verbandsversuch Göhrde. Forst und Holz, 51: 70–75.Google Scholar
  21. Givnish, T.J. 1988. Adaptation to sun and shade: a whole-plant perspective. Australian Journal of Plant Physiology 15: 63–92.CrossRefGoogle Scholar
  22. Grime JP. 1979. Plant strategies and vegetation processes. Chichester: Wiley, p.222.Google Scholar
  23. Gürth P, Velasquez C. 1991. Qualitätsuntersuchungen an Eichenjungbeständen im Markgräflerland. Forst und Holz, 23: 671–677.Google Scholar
  24. Hauskeller-Bullerjahn K. 1997. Wachstum junger Eichen unter Schirm. Berichte des Forschungszentrums Waldökosysteme Universität Göttingen, Reihe A 147, p.142.Google Scholar
  25. Hein S. 2004. Zur Steuerung von Astreinigung und Dickenwachstum bei Esche (Fraxinus excelsior L.) und Ahorn (Acer pseudoplatatnus L.). Freiburger Forstliche Forschung 25, p.263.Google Scholar
  26. Hein S. 2009a. Modelling natural pruning of common ash, sycamore and wild cherry. In: H. Spiecker, S. Hein, K. Makkonen-Spiecker and M. Thies (eds), Valuable broadleaved forests in Europe. European Forest Institute Research Report 22. Brill, Leiden. pp. 103–122.Google Scholar
  27. Hein S. 2009b. Wertholzproduktion mit Buche, Eiche, Esche und Ahorn. Allgemeine Forstzeitschrift/Der Wald, 64: 240–242.Google Scholar
  28. Hein S, Collet C, Ammer C, Le Goff N, Skovsgaard JP, Savill P. 2009. A review of growth and stand dynamics of Acer pseudoplatanus L. in Europe: implications for silviculture. Forestry 82: 361–385.CrossRefGoogle Scholar
  29. Hemery GE, Savill PS, Pryor SN. 2005. Applications of the crown diameter- stem diameter relationship for different species of broadleaved trees. Forest Ecology and Management 215: 285–294.CrossRefGoogle Scholar
  30. Horne RH. 1990. Early espacement of wheatfield white cypress pine regeneration: the effect on secondary regeneration, limb size and stand merchantability. Australian Forestry, 53: 160–167.Google Scholar
  31. Hügin G. 1990. Die Mooswälder der Freiburger Bucht. Beihefte zu den Veröffentlichungen für Naturschutz und Landschaftspflege in Baden-Württemberg 29. Ludwigsburg: Ungeheuer & Ulmer, p.85.Google Scholar
  32. Jaeger C. 2008. Ecophysiological studies on the flood tolerance of common ash (Fraxinus excelsior L.): impact of root-zone hypoxia on central parameters of C metabolism. PhD thesis, University of Freiburg. Available at: http://www.freidok.uni-freiburg.de/volltexte/5853/pdf/diss_cjaeger.pdf [accessed 01 February 2012]
  33. Jarvis PG. 1964. The adaptability to light intensity of seedlings of Quercus petraea (Matt.) Liebl.. Journal of Ecology, 52: 545–571.CrossRefGoogle Scholar
  34. Joyce PM. 1998. Growing broadleaves: silvicultural guidelines for ash, sycamore, wild cherry, beech and oak in Ireland. Dublin: COFORD, p.144.Google Scholar
  35. Kerr G. 1995. Silviculture of ash in southern England. Forestry, 68: 63–70.CrossRefGoogle Scholar
  36. Kerr G. 2003. Effects of spacing on the early growth of planted Fraxinus excelsior L. Canadian Journal of Forest Research, 33: 1196–1207.CrossRefGoogle Scholar
  37. Kerr G, Evans J. 1993. Growing broadleaves for timber. Forestry Commission handbook 9. London: H.M.S.O, p.95.Google Scholar
  38. Kerr G, Boswell RC. 2001. The influence of spring frosts, ash bud moth (Prays fraxinella) and site factors on forking of young ash (Fraxinus excelsior) in southern Britain. Forestry 74:29–40.CrossRefGoogle Scholar
  39. Kerr G, Cahalan C. 2004. A review of site factors affecting the early growth of ash (Fraxinus excelsior L.). Forest Ecology and Management, 188: 225–234.CrossRefGoogle Scholar
  40. Krahl-Urban J. 1955. Winterfrostschäden an Trauben-, Stiel- und Roteichen. Der Forst- und Holzwirt, 10: 111–113.Google Scholar
  41. Küster B. 2000. Die Auswirkungen unterschiedlicher waldbaulicher Behandlungen auf das Wachstum und die Qualitätsentwicklung junger Traubeneichen (Quercus petraea (Matt.) Liebl.). Forstliche Forschungsberichte München 179, p.223.Google Scholar
  42. Landesforstverwaltung Baden-Württemberg. 1993. Hilfstabellen für die Forsteinrichtung. Ministerium für Ländlichen Raum, Ernährung, Landwirtschaft und Forsten Baden-Württemberg (ed), Stuttgart.Google Scholar
  43. Lanier L. 1988. Précis de sylviculture. ENGREF, Nancy.Google Scholar
  44. Leibundgut H. 1976. Grundlagen zur Jungwaldpflege — Ergebnisse zwanzigjähriger Untersuchungen über die Vorgänge der Ausscheidung, Umsetzung und Qualitätsentwicklung in jungen Eichenbeständen. Mitteilungen der Eidgenössischen Anstalt für das forstliche Versuchswesen 52: 311–371.Google Scholar
  45. Lüpke vB. 1989. Die Esche — wertvolle Baumart im Buchenmischwald. Allgemeine Forstzeitschrift/Der Wald, 44: 1040–1042.Google Scholar
  46. Lüpke vB. 1995. Überschirmungstoleranz von Stiel- und Traubeneichen als Voraussetzung für Verjüngungsverfahren unter Schirm. Mitteilungen der Forstlichen Versuchsanstalt Rheinland-Pfalz, 34: 141–160.Google Scholar
  47. Lüpke vB. 1998. Silvicultural methods of oak regeneration with special respect to shade tolerant mixed species. Forest Ecology and Management 106: 19–26.CrossRefGoogle Scholar
  48. Maurer EI 1963. Waldbauliche und holzkundliche Untersuchungen an Eschen aus dem Allgäu. Forstwissenschaftliches Centralblatt, 82: 162–188.CrossRefGoogle Scholar
  49. Mosandl R, Paulus F. 2002. Rationelle Pflege junger Eichenbestände. Allgemeine Forstzeitschrift/Der Wald, 57: 581–584.Google Scholar
  50. Mosandl R, Burschel P, Sliwa J. 1988. Die Qualität von Auslesebäumen in Eichenjungbeständen. Forst und Holz, 43: 37–41.Google Scholar
  51. Mosandl R, El Kateb H, Ecker J. 1991. Untersuchungen zur Behandlung von jungen Eichenbeständen. Forstwissenschaftliches Centralblatt, 110: 358–370.CrossRefGoogle Scholar
  52. Nagel R-V, Rumpf H. 2010. Der Eichenverbandsversuch Ahlhorn: Ergebnisse nach 35-jähriger Beobachtungsdauer. Forst und Holz, 65: 14–21.Google Scholar
  53. Nelder JA. 1962. New kinds of systematic designs for spacing experiments. Biometrics, 18: 283–307.CrossRefGoogle Scholar
  54. Nychka D. 2000. Spatial process estimates as smoothers. In: M. Schimek (ed), Smoothing and regression: approaches, computation, and application. New York: Wiley, pp. 393–424Google Scholar
  55. Nyland RD. 2002. Silviculture: concepts and applications. New York: The McGraw Hill Companies, 682 pp.Google Scholar
  56. Okali DUU. 1966. A comparative study of the ecologically related tree species Acer pseudoplatanus and Fraxinus excelsior: I. The analysis of seedling distribution. Journal of Ecology, 54: 129–141.CrossRefGoogle Scholar
  57. Oosterbaan A, Hochbichler E, Nicolescu VN, Spiecker H. 2008. Silvicultural principles, phases and measures in growing valuable roadleaved tree species. Publication of COST E42, Growing Valuable Broadleaved Tree Species“ (ValBro). Available at: http://www.valbro.unifreiburg.de/pdf/paper_silvics.pdf [accessed 01 February 2012].
  58. Peracca, G.G., O’Hara, K.L. 2008. Effects of growing space on growth for 20- year-old giant sequoia, Ponderosa pine, and Douglas-fir in the Sierra Nevada. Western Journal of Applied Forestry 23: 156–165.Google Scholar
  59. Petritan AM, v Lüpke B. von Petritan IC. 2007. Effects of shade on growth and mortality of maple (Acer pseudoplatanus), ash (Fraxinus excelsior) and beech (Fagus sylvatica) saplings. Forestry, 80: 397–412.CrossRefGoogle Scholar
  60. Pinheiro JC, Bates DM. 2000. Mixed-effects models in S and S-Plus. New York: Springer, p.528.CrossRefGoogle Scholar
  61. Plochmann R. 1992. The forests of Central Europe: a changing view. Journal of Forestry 90: 12–41.Google Scholar
  62. Pretzsch H. 2009. Forest dynamics, growth and yield: from measurement to model. Berlin: Springer, 664 pp.Google Scholar
  63. Redmond J, Gallagher G, Mac Siúrtáin M. 2005. Systematic spacing trials for plantation research and demonstration. COFORD Connects, Silviculture/Management No. 12.Google Scholar
  64. R Development Core Team 2011. An Introduction to R. 103 pp.Google Scholar
  65. Riley M, Nixon CJ. 1993. 50 year results from an oak spacing trial in South Scotland. Scottish Forestry, 47: 79–82.Google Scholar
  66. Röhrig E, Bartsch N, Lüpke Bv. 2006. Waldbau auf ökologischer Grundlage. Stuttgart: Eugen Ulmer, p. 479.Google Scholar
  67. Ruppert D, Wand MP, Carroll RJ. 2003. Semiparametric Regression. Cambridge: Cambridge University Press, p. 386.CrossRefGoogle Scholar
  68. Savill PS, Spillsbury MJ. 1991. Growing oaks at closer spacing. Forestry, 64: 373–384.CrossRefGoogle Scholar
  69. Savill P, Evans J, Auclair D, Falck J. 1997. Plantation silviculture in Europe. Oxford: University Press, p.297.Google Scholar
  70. Schaper C. 1978. Das Jugendwachstum von Stiel- und Traubeneichen auf norddeutschen Standorten. Dissertation Georg-August-University Göttingen, p.194.Google Scholar
  71. Schmaltz J, Fröhlich A, Gebhardt M. 1997. Die Qualitätsentwicklung in jungen Traubeneichenbeständen im Hessischen Spessart. Forstarchiv, 68: 3–10.Google Scholar
  72. Schmidt W. 1996. Zur Entwicklung der Verjüngung in zwei Femellücken eines Kalkbuchenwaldes. Forst und Holz, 7: 201–205.Google Scholar
  73. Sjolte-Jørgensen J. 1967. The influence of spacing on the growth and development of coniferous plantations. International Review of Forestry Research, 2: 43–94.Google Scholar
  74. Smith DM, Larson BC, Kelty MJ, Ashton PMS. 1997. The practice of silviculture. New York: Wiley, p.537.Google Scholar
  75. Spellmann H. 1995. Holzqualität als Beurteilungskriterium im langfristigen Versuchswesen. Forst und Holz, 50: 743–747.Google Scholar
  76. Spellmann H. 2001. Bewirtschaftung der Eiche auf Grundlage waldwachstumskundlicher Untersuchungen in Nordwestdeutschland. Beiträge für Forstwirtschaft und Landschaftsökologie, 35: 145–151.Google Scholar
  77. Spellmann H, Baderschneider A. 1988. Erste Auswertung eines Traubeneichen-Pflanzverbands- und Sortimentsversuches im Forstamt Hardegsen/Solling. Forst und Holz, 43: 447–450.Google Scholar
  78. Spiecker H, Hein S, Makkonen-Spiecker K, Thies M. (eds). 2009. Valuable Broadleaved Forests in Europe. European Forest Institute Research Report 22. Leiden: Brill, p. 256.Google Scholar
  79. Sprugel DG. 2002. When branch autonomy fails: Milton’s law of resource availability and allocation. Tree Physiology, 22: 1119–1124.PubMedCrossRefGoogle Scholar
  80. Tapper P-G. 1992. Demography of persistent juveniles in Fraxinus excelsior. Ecography 15: 385–392.CrossRefGoogle Scholar
  81. Tapper, P-G. 1996. Tree dynamics in a successional Alnus-Fraxinus woodland. Ecography, 19: 237–244.Google Scholar
  82. Valkonen S. 2008. Survival and growth of planted and seeded oak (Quercus robur L.) seedlings with and without shelters on field afforestation sites in Finland. Forest Ecology and Management, 255: 1085–1094.CrossRefGoogle Scholar
  83. Van Miegroet M. 1956. Untersuchungen über den Einfluß der waldbaulichen Behandlung und der Umweltsfaktoren auf den Aufbau und die morphologischen Eigenschaften von Eschendickungen im schweizerischen Mittelland. Mitteilungen der Schweizerischen Anstalt für das Forstliche Versuchswesen, 32: 229–370.Google Scholar
  84. Vilinger E. 2008. Geologie der Freiburger Bucht. In: H. Körner (ed.), Die Mooswälder — Natur- und Kulturgeschichte der Breisgauer Bucht. Freiburg: Lavori, pp. 15–42.Google Scholar
  85. Wagenhoff A. 1975. Die Wirtschaft in Edellaubholz/Buchen-Mischbeständen auf optimalen Standorten im Forstamt Bovenden. Aus dem Walde, 24: 5–60.Google Scholar
  86. Wardle P. 1959. The regeneration of Fraxinus excelsior in woods with a layer of Mercurialis perennis. Journal of Ecology, 47: 483–497.CrossRefGoogle Scholar
  87. Welander NT, Ottosson B. 1998. The influence of shading on growth and morphology in seedlings of Quercus robur L. and Fagus sylvatica L. Forest Ecology and Management, 107: 117–126.CrossRefGoogle Scholar
  88. Westoby M. 1984. The self-thinning rule. Advances in ecological research, 14: 167–225.CrossRefGoogle Scholar
  89. Wood SN. 2006. Generalized additive models: An introduction with R. Chapman & Hall/CRC, p. 392.Google Scholar
  90. Zieren A. 1970. Zur Ästung von Esche und Eiche. Allgemeine Forstzeitschrift, 25: 771–772.Google Scholar

Copyright information

© Northeast Forestry University and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christian Kuehne
    • 1
  • Edgar Kublin
    • 3
  • Patrick Pyttel
    • 2
  • Jürgen Bauhus
    • 1
  1. 1.Institute of SilvicultureUniversity of FreiburgFreiburg i.Br.Germany
  2. 2.Faculty of Forests and ForestryUniversity of Applied Sciences Weihenstephan-TriesdorfFreisingGermany
  3. 3.Department of Biometry and InformaticsForest Research Station Baden-WürttembergFreiburgGermany

Personalised recommendations