Advertisement

Journal of Forestry Research

, Volume 23, Issue 4, pp 583–592 | Cite as

Low temperature, IBA concentrations and optimal time for adventitious rooting of Eucalyptus benthamii mini-cuttings

  • Gilvano Ebling Brondani
  • Francisco José Benedini Baccarin
  • Heron Wilhelmus de Wit Ondas
  • José Luiz Stape
  • Antonio Natal Gonçalves
  • Marcilio de Almeida
Original Paper

Abstract

Eucalyptus benthamii is a forest species of economic interest that has difficulty with seed production and also is considered to have difficulty with adventitious rooting using propagation techniques, such as cutting or mini-cutting. We aimed to assess the adventitious rooting percentage under different storage times in low temperatures and at various IBA (indole-3-butyric acid) concentrations to determine the optimal time of permanence for rooting Eucalyptus benthamii minicuttings in a greenhouse. Shoots collected from mini-stumps cultivated in a semi-hydroponic system were used to obtain the mini-cuttings. For the first experiment, the mini-cuttings were stored at 4°C for 0 (immediate planting), 24, 48, 72, 96 and 120 h. The second experiment evaluated the rooting dynamic to determine the optimal time of permanence for minicuttings in a greenhouse. The basal region of the mini-cutting was treated with various IBA solutions: 0 (free of IBA), 1,000, 2,000, 3,000 and 4,000 mg·L−1. Every seven days (0 (immediate planting), 7, 14, 21 and 28 days), destructive sampling of the mini-cuttings was performed to evaluate the histology of the adventitious rooting. Eucalyptus benthamii minicuttings should be rooted immediately after the collection of the shoots. The 2,000 mg·L−1 IBA concentration induced a greater speed and percentage of adventitious rooting, and an interval of 35 to 42 days was indicated for permanence of the mini-cuttings in the greenhouse. Exposure to low temperature induced adventitious root formation with diffuse vascular connections.

Keywords

rhizogenesis plant cloning mini-cutting technique histological analysis indole-3-butyric acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almeida FD, Xavier A, Dias JMM, Paiva HN. 2007. Auxin (IBA and NAA) effects on minicuttings rooting of Eucalyptus cloeziana F. Muell. clones. Revista Árvore, 31(3): 455–463.Google Scholar
  2. Amri E, Lyaruu HVM, Nyomora AS, Kanyeka ZL. 2010. Vegetative propagation of African Blackwood (Dalbergia melanoxylon Guill. & Perr.): effects of age of donor plant, IBA treatment and cutting position on rooting ability. New Forests, 39(2): 183–194.CrossRefGoogle Scholar
  3. Baltierra XC, Montenegro G, García E. 2004. Ontogeny of in vitro rooting processes in Eucalyptus globulus. In Vitro Cellular & Developmental Biology — Plant, 40(5): 499–503.CrossRefGoogle Scholar
  4. Bennett IJ, McDavid DAJ, McComb JA. 2003. The influence of ammonium nitrate, pH and indole butyric acid on root induction and survival in soil of micropropagated Eucalyptus globulus. Biologia Platarum, 47(3): 355–360.CrossRefGoogle Scholar
  5. Benson D, McDougall L. 1998. Ecology of Sydney plant species. Part 6 Dicotyledon family Myrtaceae. Cunninghamia, 5(4):809–987Google Scholar
  6. Benson DH. 1985. Aspects of the ecology of a rare tree species, Eucalyptus benthamii, at Bents Basin, Wallacia. Cunninghamia, 1(3): 371–383Google Scholar
  7. Brondani GE, Grossi F, Wendling I, Dutra LF, Araujo MA. 2010. IBA application for rooting of Eucalyptus benthamii Maiden & Cambage x Eucalyptus dunnii Maiden minicuttings. Acta Scientiarum. Agronomy, 32(4): 667–674.CrossRefGoogle Scholar
  8. Butcher PA, Skinner AK, Gardiner CA. 2005. Increased inbreeding and interspecies gene flow in remnant populations of the rare Eucalyptus benthamii. Conservation Genetics, 6(2): 213–226.CrossRefGoogle Scholar
  9. Corrêa LR, Fett-Neto AG. 2004. Effects of temperature on adventitious root development in microcuttings of Eucalyptus saligna Smith and Eucalyptus globulus Labill. Journal of Thermal Biology, 29(6): 315–324.CrossRefGoogle Scholar
  10. Cunha ACMCM, Wendling I, Souza Júnior L. 2005. Productivity and survival of Eucalyptus benthamii Maiden et Cambage ministumps in hydroponics system and in plastic tubes. Ciência Florestal, 15(3): 307–310Google Scholar
  11. Dai W, Cheng ZM, Sargent WA. 2004. Expression of the rolB gene enhances adventitious root formation in hardwood cuttings of aspen. In Vitro Cellular & Developmental Biology — Plant, 40(4): 366–370.CrossRefGoogle Scholar
  12. Ferreira EM, Alfenas AC, Mafia RG, Leite HG, Sartorio RC, Penchel Filho RM. 2004. Determination of the optimum time for rooting of mini-cuttings of Eucalyptus spp. clones. Revista Árvore, 28(2):183–187.Google Scholar
  13. Fogaça CM, Fett-Neto AG. 2005. Role of auxin and its modulators in the adventitious rooting of Eucalyptus species differing in recalcitrance. Plant Growth Regulation, 45(1):1–10.CrossRefGoogle Scholar
  14. Garrido G, Ramon Guerrero J, Angel Cano E. 2002. Origin and basipetal transport of the IAA responsible for rooting of carnation cuttings. Physiologia Plantarum, 114(2):303–312.PubMedCrossRefGoogle Scholar
  15. Goulart PB, Xavier A. 2008. Effect of storage time of minicuttings on the rooting of Eucalyptus grandis × E. urophylla clones. Revista Árvore, 32(4): 671–677.CrossRefGoogle Scholar
  16. Hartmann HT, Kester DE, Davies JR FT, Geneve RL. 2011. Plant propagation: principles and practices. 8th Edition. Prentice-Hall, São Paulo, p. 915.Google Scholar
  17. Hunt MA, Trueman SJ, Rasmussen A. 2011. Indole-3-butyric acid accelerates adventitious root formation and impedes shoot growth of Pinus elliottii var. elliottii × P. caribaea var. hondurensis cuttings. New Forests, 41(3): 349–360.CrossRefGoogle Scholar
  18. Husen A, Pal M. 2007. Metabolic changes during adventitious root primordium development in Tectona grandis Linn. f. (teak) cuttings as affected by age of donor plants and auxin (IBA and NAA) treatment. New Forests, 33(3): 309–323.CrossRefGoogle Scholar
  19. Husen A. 2008. Clonal propagation of Dalbergia sissoo Roxb. and associated metabolic changes during adventitious root primordium development. New Forests, 36(1): 13–27.CrossRefGoogle Scholar
  20. Jovanovic T, Booth TH. 2002. Improved species climatic profiles. Australia: Union Offset Printing: Joint Venture Agroforestry Program, Rural Industries Research and Development Corporation, p.68.Google Scholar
  21. Karnovsky MJ. 1965. A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. The Journal of Cell Biology, 27: 137–138Google Scholar
  22. Komatsu YH, Batagin-Piotto KD, Brondani GE, Gonçalves AN, Almeida M. 2011. In vitro morphogenic response of leaf sheath of Phyllostachys bambusoides. Journal of Forestry Research, 22(2): 209–215.CrossRefGoogle Scholar
  23. Li SW, Xue L, Xu S, Feng H, An L. 2009. Mediators, genes and signaling in adventitious rooting. The Botanical Review, 75(2):230–247.CrossRefGoogle Scholar
  24. Lin MJ, Arnold R, Li BH, Yang MS. 2003. Selection of cold-tolerant eucalypts for Hunan Province. In: Turnbull JW (ed.), Eucalypts in Asia: proceedings of a international conference held in Zhanjiang, Guangdong, people’s Republic of China, 7–11 April 2003. ACIAR, 2003. pp 107–116. (ACIAR. Proceedings, 111)Google Scholar
  25. Luckman GA, Menary RC. 2002. Increased root initiation in cuttings of Eucalyptus nitens by delayed auxin application. Plant Growth Regulation, 38(1):31–35.CrossRefGoogle Scholar
  26. Müller A, Düchting P, Weiler EW. 2002. A multiplex GC-MS/MS technique for the sensitive and quantitative single-run analysis of acidic phytohormones and related compounds, and its application to Arabidopsis thaliana. Planta, 216(1): 44–56.PubMedCrossRefGoogle Scholar
  27. Rasmussen A, Smith TE, Hunt MA. 2009. Cellular stages of root formation, root system quality and survival of Pinus elliottii var. elliottii x P. caribaea var. hondurensis cuttings in different temperature environments. New Forests, 38(3): 285–294.CrossRefGoogle Scholar
  28. Sakai WS. 1973. Simple method for differential staining of paraffin embedded plant material using toluidine blue O. Biotechnic Histochemistry, 48(5):247–249.CrossRefGoogle Scholar
  29. Schwambach J, Fadanelli C, Fett-Neto AG. 2005. Mineral nutrition and adventitious rooting in microcuttings of Eucalyptus globulus. Tree Physiology, 25(4): 487–494.PubMedCrossRefGoogle Scholar
  30. Schwambach J, Ruedell CM, Almeida MR, Penchel RM, Araújo EF, Fett-Neto A. 2008. Adventitious rooting of Eucalyptus globulus × maidennii mini-cuttings derived from mini-stumps grown in sand bed and intermittent flooding trays: a comparative study. New Forests, 36(3):261–271.CrossRefGoogle Scholar
  31. Stape JL, Gonçalves JLM, Gonçalves AN. 2001. Relationships between nursery practices and field performance for Eucalyptus plantations in Brazil. New Forests, 22(1–2): 19–41.CrossRefGoogle Scholar
  32. Wendling I, Brondani GE, Dutra LF, Hansel FA. 2010. Mini-cuttings technique: a new ex vitro method for clonal propagation of sweetgum. New Forests, 39(3):343–353.CrossRefGoogle Scholar
  33. Wendling I, Xavier A, Gomes JM, Pires IE, Andrade HB. 2000. Minicuttings and microcuttings rooting of Eucalyptus grandis W. Hill ex Maiden clones as affected by IBA. Revista Árvore, 24(2): 187–192.Google Scholar
  34. Wendling I, Xavier A. 2005. Indolbutiric acid and serial minicutting technique on rooting and vigor of Eucalyptus grandis clone minicuttings. Revista Árvore, 29(6):921–930.CrossRefGoogle Scholar
  35. Zhu XY, Chai SJ, Chen LP, Zhang MF, Yu JQ. 2010. Induction and origin of adventitious roots from chimeras of Brassica juncea and Brassica oleracea. Plant Cell, Tissue and Organ Culture, 101(3): 287–294.CrossRefGoogle Scholar

Copyright information

© Northeast Forestry University and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Gilvano Ebling Brondani
    • 1
  • Francisco José Benedini Baccarin
    • 2
  • Heron Wilhelmus de Wit Ondas
    • 3
  • José Luiz Stape
    • 4
  • Antonio Natal Gonçalves
    • 2
  • Marcilio de Almeida
    • 3
  1. 1.Department of Forest EngineeringFederal University of Mato Grosso (UFMT)Cuiabá, Mato GrossoBrazil
  2. 2.Department of Forest Sciences, “Luiz de Queiroz” College of AgricultureUniversity of São Paulo (ESALQ/USP)Piracicaba, São PauloBrazil
  3. 3.Department of Biological Sciences, “Luiz de Queiroz” College of AgricultureUniversity of São Paulo (ESALQ/USP)Piracicaba, São PauloBrazil
  4. 4.Department of Forest and Environmental SciencesNorth Carolina State UniversityCarolinaUSA

Personalised recommendations