Skip to main content
Log in

Predicting dynamics of soil organic carbon mineralization with a double exponential model in different forest belts of China

  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

The dynamics of soil organic carbon (SOC) was analyzed by using laboratory incubation and double exponential model that mineralizable SOC was separated into active carbon pools and slow carbon pools in forest soils derived from Changbai and Qilian Mountain areas. By analyzing and fitting the CO2 evolved rates with SOC mineralization, the results showed that active carbon pools accounted for 1.0% to 8.5% of SOC with an average of mean resistant times (MRTs) for 24 days, and slow carbon pools accounted for 91% to 99% of SOC with an average of MRTs for 179 years. The sizes and MRTs of slow carbon pools showed that SOC in Qilian Mountain sites was more difficult to decompose than that in Changbai Mountain sites. By analyzing the effects of temperature, soil clay content and elevation on Soc mineralization, results indicated that mineralization of SOC was directly related to temperature and that content of accumulated SOC and size of slow carbon pools from Changbai Mountain and Qilian Mountain sites increased linearly with increasing clay content, respectively, which showed temperature and clay content could make greater effect on mineralization of SOC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cabrera, M.L. 1993. Modeling the flush of nitrogen mineralization caused by drying and rewetting soils [J]. Soil Sci. Soc. Am. J., 57: 63–66.

    Article  Google Scholar 

  • De Willigen, P. 1991. Nitrogen turnover in the soil-crop ecosystem; comparison of fourteen simulation models [J]. Fert. Res., 27: 141–150.

    Article  Google Scholar 

  • Deans, J.R., Molina, J.A.E., Clapp, C.E. 1986. Models for predicting potentially mineralizable nitrogen and decomposition rate constants [J]. Soil Sci. Soc. AM. J., 50: 323–326.

    Article  CAS  Google Scholar 

  • Garten, C.T., Post, W.M., Hanson, P.J., et al. 1999. Forest soil carbon inventories and dynamics along an elevation gradient in the southern Appalachian Mountains [J]. Biogeochemistry, 45: 115–145.

    Google Scholar 

  • Goh, K.M., Stout, J.D., O’Brien, B.J. 1984. The significance of fractionation in dating the age and turnover of SOM [J]. New Zealand Journal of Soil Science, 35: 69–72.

    Google Scholar 

  • Gregorich, E.G., Kachanoski, R.G., Voroney, R.P. 1989. Carbon mineralization in soil size fractions after various amounts of aggregate disruption [J]. J. Soil Sci., 40: 649–659.

    Article  CAS  Google Scholar 

  • Hassink, J., Bouwman, L.A., Zwart, K.B. et al. 1993. Relationships between soil texture, physical protection of organic matter, soil biota, and C and N mineralization in grassland soils [J]. Geoderma, 57: 105–128.

    Article  CAS  Google Scholar 

  • Hassink, J. 1994b. Effects of soil texture and grassland management on soil organic C and N and rates of C and N mineralization [J]. Soil Biology & Biochemistry, 9: 1221–1231.

    Article  Google Scholar 

  • Hudson, R.J.M., Gherini, S.A. & Goldstein, R.A. 1994. Modeling the global carbon cycle: nitrogen fertilization of the terrestrial biosphere and the “missing” CO2 sink [J]. Global Biogeochemical Cycles, 8: 307–333.

    Article  CAS  Google Scholar 

  • Insam, H. 1990. Are the soil microbial biomass and basal respiration governed by the climatic regime [J]?. Soil Biology and Biochemistry, 22: 525–532.

    Article  Google Scholar 

  • Katterer, T., Reichstein, M., Andren, O., Lomander, A. 1998. Temperature dependence of organic matter decomposition: a critical review using literature data analysed with different models [J]. Biology and Fertility of Soils, 27: 258–262.

    Article  CAS  Google Scholar 

  • Kirschbaum, M.F. 1995. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage [J]. Soil Biology and Biochemistry, 27: 753–760.

    Article  CAS  Google Scholar 

  • Little, T.M., Hills, F.J. 1975. Statistics Methods in Agricultural Research [M]. California: University of California, Davis, 242.

    Google Scholar 

  • Lloyd, J., Taylor, J.A. 1994. On the temperature dependence of soil respiration [J]. Functional Ecology, 8: 315–323.

    Article  Google Scholar 

  • Motavalli, P.P., Palm, C.A., Parton, W.J., et al. 1994. Comparison of laboratory and modeling simulation methods for estimating soil carbon pools in tropical forest soils [J]. Soil Biol. Biochem., 26(8): 935–944.

    Article  Google Scholar 

  • Nelson, D.W. & Sommers, L.E. 1975. A rapid and accurate method for estimating organic carbon in soil [J]. Proceedings of the Indiana Academy of Science, 84:456–462.

    Google Scholar 

  • Parton, W.J. 1996. The CENTURY model [C]. In: D.S., Powlson et al. (ed.) Evaluation of soil organic matter models, NATO ASI Series 1. Heidelberg, Germany: Springer-Verlag, p38.

    Google Scholar 

  • Parton, W.J., Scurlock, J.M.O., Ojima, D.S., et al. 1993. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide [J]. Global Biogeochemical Cycles, 7: 785–809.

    Article  CAS  Google Scholar 

  • Paul, E.A., Collins, H.P. and Leavitt S.W. 2001a. Dynamics of resistant soil carbon of Midwestern agricultural soils measured by naturally-occurring 14C abundance [J]. Geoderma, 104: 239–265.

    Article  CAS  Google Scholar 

  • Raich, J.W., Schlesinger, W.H. 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate [J]. Tellus, 44B: 81–99.

    CAS  Google Scholar 

  • Schimel, D.S. 1995. Terrestrial ecosystems and the carbon cycle [J]. Global Change Biology, 1: 77–91.

    Article  Google Scholar 

  • Schimel, D.S., Braswell, B.H., Holland, E.A., et al. 1994. Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils [J]. Global Biogeochemical Cycles, 8(3): 279–293.

    Article  CAS  Google Scholar 

  • Scott, N.A., Cole, C.V., Elliott, E.T., et al. 1996. Soil textural control on decomposition and soil organic matter dynamics [J]. Soil Sci. Soc. Am. J, 60: 1102–1109.

    Article  CAS  Google Scholar 

  • Singh, J.S., Gupta, S.R. 1977. Plant decomposition and soil respiration in terrestrial ecosystems [J]. Botanical Review, 43: 449–526.

    Article  CAS  Google Scholar 

  • Sollins, P., Gassman, C., Paul, E.A., et al. 1999. Soil carbon and nitrogen: pools and fractions [C]. In: Robertson, G.P., Bledsoe, C.S., Coleman, D.C and Sollins, P (eds.), Standard Soil Methods for Long-Term Ecological Research. New York: Oxford University Press, 89–105.

    Google Scholar 

  • Sorenhen, L.H. 1981. Carbon-nitrogen relationships during the humification of cellulose in soils containing different amounts of clay [J]. Soil Biology & Biochemistry, 13: 313–321.

    Article  Google Scholar 

  • Winkler, J.P., Cherry, R.S & Schlesinger, W.H. 1996. The Q10 relationship of microbial respiration in a temperate forest soil [J]. Soil Biology and Biochemistry, 28: 1067–1072.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Foundation item: The research was funded by National Natural Science Foundation (40231016) and Canadian International Development Agency (CIDA).

Biography: YANG Li-xia (1976–), female, Ph.D. Candidate in Nanjing Institute of geography and Limnology, Chinese Academy of Sciences Nanjing, Nanjing 210008, P. R. China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Lx., Pan, Jj. & Yuan, Sf. Predicting dynamics of soil organic carbon mineralization with a double exponential model in different forest belts of China. J. of For. Res. 17, 39–43 (2006). https://doi.org/10.1007/s11676-006-0009-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-006-0009-1

Keywords

CLC number

Navigation