Skip to main content
Log in

Stable EGFP gene expression in C6 glioma cell line after transduction with HIV-1-based lentiviral vector

  • Published:
Chinese Journal of Cancer Research

Abstract

Objective

To establish a stable C6/EGFP glioma cell line for studies on glioma.

Methods

The C6 glioma cell line was transfected with the human immunodeficiency virus type I (HIV-1) based lentivirus vector containing two enhancer-promoters CMV and EF1α. Enhanced green fluorescent protein (EGFP)-positive C6 cells were sorted out by fluorescence-activated cell sort. Expression of EGFP was observed by fluorescent microscopy. EGFP gene in C6 genome was assessed by Polymerase chain reaction (PCR) and DNA sequencing. Original and transfected cells were compared biologically and cytomorphologically.

Results

Lentivirus vector transfection produced up to 40% EGFP-positive cells. After fluorescence-activated cell sort selection, a pure cell line C6/EGFP was established. PCR and DNA sequencing revealed integration of EGFP gene in C6 cell genome. Analysis of cell characteristics revealed no difference between transfected and original cells.

Conclusion

A C6/EGFP cell line expressing EGFP as a marker is established, in which the EGFP gene is integrated into the genome. This cell line can be served as a promising tool for further basic research and gene therapy studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Legler JM, Ries LA, Smith MA, et al. Cancer surveillance series [corrected]: brain and other central nervous system cancers: recent trends in incidence and mortality[J]. J Natl Cancer Inst 1999; 91: 1382–1390.

    Article  PubMed  CAS  Google Scholar 

  2. Surawicz TS, Davis F, Freels S, et al. Brain tumor survival: results from the National Cancer Data Base[J]. J Neurooncol 1998; 40: 151–160.

    Article  PubMed  CAS  Google Scholar 

  3. Cheng L, Fu J, Tsukamoto A, et al. Use of green fluorescent protein variants to monitor gene transfer and expression in mammalian cells[J]. Nat Biotechnol 1996; 14: 606–609.

    Article  PubMed  CAS  Google Scholar 

  4. Bouvet M, Wang J, Nardin SR, et al. Real-time optical imaging of primary tumor growth and multiple metastatic events in a pancreatic cancer orthotopic model[J]. Cancer Res 2002; 62: 1534–1540.

    PubMed  CAS  Google Scholar 

  5. Zhang G, Gurtu V, Kain SR. An enhanced green fluorescent protein allows sensitive detection of gene transfer in mammalian cells[J]. Biochem Biophy Res Commun 1996; 227: 707–711.

    Article  CAS  Google Scholar 

  6. Hoffman RM. Green fluorescent protein imaging of tumor growth, metastasis, and angiogenesis in mouse models[J]. Lancet Oncol 2002; 3: 546–556.

    Article  PubMed  CAS  Google Scholar 

  7. Amoh Y, Nagakura C, Maitra A, et al. Dual-color imaging of nascent angiogenesis and its inhibition in liver metastases of pancreatic cancer[J]. Anticancer Res 2006; 26: 3237–3242.

    PubMed  CAS  Google Scholar 

  8. Hoffman RM. In vivo cell biology of cancer cells visualized with fluorescent proteins[J]. Curr Top Dev Biol 2005; 70: 121–144.

    Article  PubMed  CAS  Google Scholar 

  9. Condeelis J, Segall JE. Intravital imaging of cell movement in tumours[J]. Nat Rev Cancer 2003; 3: 921–930.

    Article  PubMed  CAS  Google Scholar 

  10. Yang M, Baranov E, Jiang P, et al. Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases[J]. Proc Natl Acad Sci USA 2000; 97: 1206–1211.

    Article  PubMed  CAS  Google Scholar 

  11. Yang M, Baranov E, Wang J-W, et al. Direct external imaging of nascent cancer, tumor progression, angiogenesis, and metastasis on internal organs in the fluorescent orthotopic model[J]. Proc Natl Acad Sci USA 2002; 99: 3824–3829.

    Article  PubMed  CAS  Google Scholar 

  12. Flannery JG, Zolotukhin S, Vaquero MI, et al. Efficient photoreceptor-targeted gene expression in vivo by recombinant adeno-associated virus[J]. Proc Natl Acad Sci USA 1997; 94: 6916–6921.

    Article  PubMed  CAS  Google Scholar 

  13. Bennett J, Duan D, Engelhardt JF, et al. Real-time, noninvasive in vivo assessment of adeno-associated virus-mediated retinal transduction[J]. Invest Ophthalmol Vis Sci 1997; 38: 2857–2863.

    PubMed  CAS  Google Scholar 

  14. Bennett J, Maguire AM, Cideciyan AV, et al. Stable transgene expression in rod photoreceptors after recombinant adeno-associated virus-mediated gene transfer to monkey retina[J]. Proc Natl Acad Sci USA 1999; 96: 9920–9925.

    Article  PubMed  CAS  Google Scholar 

  15. Miyoshi H, Takahashi M, Gage FH, et al. Stable and efficient gene transfer into the retina using an HIV-based lentiviral vector[J]. Proc Natl Acad Sci USA 1997; 94: 10319–10323.

    Article  PubMed  CAS  Google Scholar 

  16. Jakobsson J, Ericson C, Jansson M, et al. Targeted transgene expression in rat brain using lentiviral vectors[J]. J Neurosci Res 2003; 73: 876–885.

    Article  PubMed  CAS  Google Scholar 

  17. Trobridge G, Russell DW. Cell cycle requirements for transduction by foamy virus vectors compared to those of oncovirus and lentivirus vectors[J]. J Virol 2004; 78: 2327–2335.

    Article  PubMed  CAS  Google Scholar 

  18. Blesch A. Lentiviral and MLV based retroviral vectors for ex vivo and in vivo gene transfer[J]. Methods 2004; 33: 164–172.

    Article  PubMed  CAS  Google Scholar 

  19. Carlotti F, Bazuine M, Kekarainen T, et al. Lentiviral vectors efficiently transduce quiescent mature 3T3-L1 adipocytes[J]. Mol Ther 2004; 9: 209–217.

    Article  PubMed  CAS  Google Scholar 

  20. Vogel R, Amar L, Thi AD, et al. A single lentivirus vector mediates doxycycline-regulated expression of transgenes in the brain[J]. Hum Gene Ther 2004; 15: 157–165.

    Article  PubMed  CAS  Google Scholar 

  21. Blomer U, Naldini L, Kafri T, et al. Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector[J]. J Virol 1997; 71: 6641–6649.

    PubMed  CAS  Google Scholar 

  22. Naldini L, Blomer U, Gallay P, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector[J]. Science 1996; 272: 263–267.

    Article  PubMed  CAS  Google Scholar 

  23. Naldini L, Blomer U, Gage FH, et al. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector[J]. Proc Natl Acad Sci USA 1996; 93: 11382–11388.

    Article  PubMed  CAS  Google Scholar 

  24. Miyoshi H. Gene delivery to hematopoietic stem cells using lentiviral vectors[J]. Methods Mol Biol. 2004; 246: 429–438.

    PubMed  CAS  Google Scholar 

  25. Kim EY, Hong YB, Lai Z, et al. Long-term expression of the human glucocerebrosidase gene in vivo after transplantation of bone-marrow-derived cells transformed with a lentivirus vector[J]. J Gene Med 2005; 7: 878–887.

    Article  PubMed  CAS  Google Scholar 

  26. Yip PK, Wong LF, Pattinson D, et al. Lentiviral vector expressing retinoic acid receptor beta2 promotes recovery of function after corticospinal tract injury in the adult rat spinal cord[J]. Hum Mol Genet 2006; 15: 3107–3118.

    Article  PubMed  CAS  Google Scholar 

  27. Shichinohe T, Bochner BH, Mizutani K, et al. Development lentiviral vectors for antiangiogenic gene delivery[J]. Cancer Gene Ther 2001; 8: 879–889.

    Article  PubMed  CAS  Google Scholar 

  28. De Palma M, Venneri MA, Naldini L. In vivo targeting of tumor endothelial cells by systemic delivery of lentiviral vectors[J]. Hum Gene Ther 2003; 14: 1193–1206.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-sheng Liu  (刘福生).

Additional information

This work was supported by the National Natural Science Foundation of China (No. 30640073); Beijing Municipal Natural Science Foundation; and the Scientific Research Foundation for Returned Scholars, from Ministry of Education of china.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, Gs., Liu, Fs., Chai, Q. et al. Stable EGFP gene expression in C6 glioma cell line after transduction with HIV-1-based lentiviral vector. Chin. J. Cancer Res. 20, 243–248 (2008). https://doi.org/10.1007/s11670-008-0243-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11670-008-0243-5

Key words

CLC number

Navigation