Skip to main content
Log in

Preparation of Ni-Zn Ferrite Nanoparticles and Study of Their Properties for Optoelectronic Applications

  • Original Research Article
  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Preparation conditions play a key role in tailoring the properties of ceramic materials, including ferrite, to suit efficient industrial and technological applications. This manuscript is concerned with correlating the structural, spectroscopic, optical, transport, and dielectric properties of nickel zinc ferrite nanoparticles (NZNs) to the sintering temperature as an effective preparation condition controlled through the coprecipitation technique. Techniques for studying the various features of the synthesized compounds include x-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, Fourier-transform infrared spectroscopy, ultraviolet-visible spectroscopy, and the LCR bridge. XRD data showed the as-prepared samples' single-phase inverse spinel structure and an increase in crystallinity with increasing sintering temperature. SEM images show the nanosized range with semi-spherical particles for all the NZN fabricated samples. Moreover, Raman spectroscopy results showed that the four distinct active modes (Eg, F2g(2), A1g(2), and A1g(1)) for the NZN compounds have the same lattice strain tendency. The direct and indirect optical energy gap values (2-3.82) eV of the synthesized compounds span a wide range in the visible and ultraviolet spectrum, making them candidates for optoelectronic applications. In general, sintering temperature plays an outstanding role in increasing the values of some features such as crystallite size, optical energy gap, and electrical conductivity, and correspondingly decreasing other features such as unit cell volume dissociation density, absorption bands, and dielectric parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. V. Manikandan, J.H. Kim, A. Mirzaei, S.S. Kim, S. Vigneselvan, M. Singh, and J. Chandrasekaran, Effect of Temperature on Gas Sensing Properties of Lithium (Li) Substituted (NiFe2O4) Nickel Ferrite Thin Film, J. Mol. Struct.Struct., 2019, 5(1177), p 485-490. https://doi.org/10.1016/j.molstruc.2018.09.085

    Article  ADS  Google Scholar 

  2. E. Oumezzine, S. Hcini, F.I.H. Rhouma, and M. Oumezzine, Frequency and Temperature Dependence of Conductance, Impedance and Electrical Modulus Studies of Ni0.6Cu0.4Fe2O4 Spinel Ferrite, J. Alloys Compd., 2017, 726, p 187-194. https://doi.org/10.1016/j.jallcom.2017.07.298

    Article  Google Scholar 

  3. R. Islam, M. Obaidur Rahman, M. Abdul Hakim, D. Kumar Saha, S. Noor, and M. Al-Mamun, Effect of Sintering Temperature on Structural and Magnetic Properties of Ni0.55Zn0.45Fe2O4 Ferrites, Mater. Sci. Appl., 2012, 3, p 326-331.

    Google Scholar 

  4. M. Penchal Reddy, W. Madhuri, M. Venkata Ramana, N. Ramamanohar Reddy, K.V. Siva Kumar, V.R.K. Murthy, K. Siva Kumar, and R. Ramakrishna Reddy, Effect of Sintering Temperature on Structural and Magnetic Properties of NiCuZn and MgCuZn Ferrites, J. Magn. Magn. Mater.Magn. Magn. Mater., 2010, 322(19), p 2819-2823. https://doi.org/10.1016/j.jmmm.2010.04.036

    Article  ADS  Google Scholar 

  5. F.L. Zabotto, A.J. Gualdi, and J.A. Eiras, Influence of the sintering Temperature on the Magnetic and Electric Properties of NiFe2O4 Ferrites, Mater. Res., 2012, 15(3), p 428-433. https://doi.org/10.1590/S1516-14392012005000043

    Article  Google Scholar 

  6. P.B. Kharat, S.D. More, S.B. Somvanshi, and K.M. Jadhav, Exploration of Thermoacoustics Behavior of Water Based Nickel Ferrite Nanofluids by Ultrasonic Velocity Method, J. Mater. Sci. Mater. Electron., 2019, 30(7), p 6564-6574. https://doi.org/10.1007/s10854-019-00963-4

    Article  Google Scholar 

  7. H. Ghayour, M. Abdellahi, N. Ozada, S. Jabbrzare, and A. Khandan, Hyperthermia Application of Zinc Doped Nickel Ferrite Nanoparticles, J. Phys. Chem. Solids, 2017, 111(August), p 464-472. https://doi.org/10.1016/j.jpcs.2017.08.018

    Article  ADS  Google Scholar 

  8. N.M. Mahmoodi, M. Bashiri, and S.J. Moeen, Synthesis of Nickel-Zinc Ferrite Magnetic Nanoparticle and Dye Degradation Using Photocatalytic Ozonation, Mater. Res. Bull., 2012, 47(12), p 4403-4408. https://doi.org/10.1016/j.materresbull.2012.09.036

    Article  Google Scholar 

  9. Ch. Srinivas, B.V. Tirupanyam, S.S. Meena, S.M. Yusuf, Ch. Seshu Babu, K.S. Ramakrishna, D.M. Potukuchi, and D.L. Sastry, Structural and Magnetic Characterization of Co-precipitated NixZn1-xFe2O4 Ferrite Nanoparticles, J. Magn. Magn. Mater.Magn. Magn. Mater., 2016, 407, p 135-141. https://doi.org/10.1016/j.jmmm.2016.01.060

    Article  ADS  Google Scholar 

  10. R. Sharma and S. Singhal, Structural, Magnetic and Electrical Properties of Zinc Doped Nickel Ferrite and Their Application in Photo Catalytic Degradation of Methylene Blue, Phys. B Condens. Matter, 2013, 414, p 83-90. https://doi.org/10.1016/j.physb.2013.01.015

    Article  ADS  Google Scholar 

  11. N. Chandamma, B.M. Manohara, B.S. Ujjinappa, G.J. Shankarmurthy, and M.V. Santhosh Kumar, Structural and Electrical Properties of Zinc Doped Nickel Ferrites Nanoparticles Prepared via Facile Combustion Technique, J. Alloys Compd., 2017, 702, p 479-488. https://doi.org/10.1016/j.jallcom.2016.12.392

    Article  Google Scholar 

  12. A.B. Trabelsi, V. Balasubramani, F.H. Alkallas, A. Sivakumar, M. Shkir, V. Manjunath, and S.H. Park, Investigation on Effect of Sintering Temperature on Structural, Morphological and Magnetic Properties of Pure and Tin Doped Nickel Ferrites for Soft Magnetic Device Applications, Surf. Interfaces., 2023, 36, p 102511. https://doi.org/10.1016/j.surfin.2022.102511

    Article  Google Scholar 

  13. K. Vepulanont, S. Sa-Nguanprang, S. Buapoon, T. Bunluesak, P. Suebsom, K. Chaisong, N. Udomsri, N. Karnchana, D. Laokae, and T. Chanadee, Nickel Ferrite Ceramics: Combustion Synthesis, Sintering, Characterization, and Magnetic and Electrical Properties, J. Asian Ceramic Soc., 2021, 9(2), p 639-651. https://doi.org/10.1080/21870764.2021.1907031

    Article  Google Scholar 

  14. N. Khatun, M.S. Hossain, M.H. Begum, S. Islam, N.I. Tanvir, R.H. Bhuiyan, and M. Al-Mamun, Effect of Sintering Temperature on Structural, Magnetic, Dielectric and Optical Properties of Ni–Mn–Zn Ferrites, J. Adv. Dielectrics, 2021, 11(06), p 2150028. https://doi.org/10.1142/S2010135X21500284

    Article  ADS  Google Scholar 

  15. G. Liu, B. Dai, Y. Ren, H. He, and W. Zhang, Microstructure and Magnetic Properties of Ni0.75Zn0.25Fe2O4 Ferrite Prepared Using an Electric Current-Assisted Sintering Method, Ceram. Int., 2021, 47(9), p 11951-11957. https://doi.org/10.1016/j.ceramint.2021.01.036

    Article  Google Scholar 

  16. R.M. Kershi, A.M. Alshehri, and R.M. Attiyah, Enhancement of Ni–Zn Ferrite Nanoparticles Parameters via Cerium Element for Optoelectronic and Energy Applications, Discov. Nano., 2023, 18(1), p 139. https://doi.org/10.1186/s11671-023-03921-6

    Article  Google Scholar 

  17. R. Sato Turtelli, G.V. Duong, W. Nunes, R. Grössinger, and M. Knobel, Magnetic Properties of Nanocrystalline CoFe2O4 Synthesized by Modified Citrate-Gel Method, J. Magn. Magn. Mater.Magn. Magn. Mater., 2008, 320(14), p 339-342. https://doi.org/10.1016/j.jmmm.2008.02.067

    Article  ADS  Google Scholar 

  18. R.M. Kershi, Spectroscopic, Elastic, Magnetic and Optical Studies of Nanocrystallite and Nanoferro-fluids Co Ferrites Towards Optoelectronic Applications, Mater. Chem. Phys., 2020, 1(248), p 122941. https://doi.org/10.1016/j.matchemphys.2020.122941

    Article  Google Scholar 

  19. S.B. Khan, S. Irfan, and S.L. Lee, Influence of Zn+ 2 Doping on Ni-based Nanoferrites;(Ni1− x ZnxFe2O4), Nanomaterials, 2019, 9(7), p 1024. https://doi.org/10.3390/nano9071024

    Article  Google Scholar 

  20. R.M. Kershi, and S.H. Aldirham, Transport and Dielectric Properties of Nanocrystallite Cobalt Ferrites: Correlation with Cations Distribution and Crystallite Size, Mater. Chem. Phys., 2019, 1(238), p 121902. https://doi.org/10.1016/j.matchemphys.2019.121902

    Article  Google Scholar 

  21. A. Zubair, Z. Ahmad, A. Mahmood, W.C. Cheong, I. Ali, M.A. Khan, A.H. Chughtai, and M.N. Ashiq, Structural, Morphological and Magnetic Properties of Eu-doped CoFe2O4 Nano-ferrites, Results Phys., 2017, 1(7), p 3203-3208. https://doi.org/10.1016/j.rinp.2017.08.035

    Article  ADS  Google Scholar 

  22. Y. Slimani, M.A. Almessiere, M. Sertkol, S.E. Shirsath, A. Baykal, M. Nawaz, S. Akhtar, B. Ozcelik, and I. Ercan, Structural, Magnetic, Optical Properties and Cation Distribution of Nanosized Ni0.3Cu0.3Zn0.4TmxFe2−xO4 (00 ≤ x ≤ 0.10) Spinel Ferrites Synthesized by Ultrasound Irradiation, Ultrason. Sonochem.. Sonochem., 2019, 57, p 203-211. https://doi.org/10.1016/j.ultsonch.2019.05.001

    Article  Google Scholar 

  23. H.M. El-Sayed, and W.R. Agami, Controlling of Optical Energy Gap of Co-ferrite Quantum Dots in Poly (Methyl Methacrylate) Matrix, Superlatt. Microstruct., 2015, 83, p 651-658. https://doi.org/10.1016/j.spmi.2015.04.013

    Article  ADS  Google Scholar 

  24. J.H. Nam, S.J. Park, and W.K. Kim, Microstructure and Magnetic Properties of Nanostructured NiZnCu Ferrite Powders Synthesized by Sol-Gel Process, IEEE Trans. Magn.Magn., 2003, 39, p 3139-3141. https://doi.org/10.1109/TMAG.2003.816032

    Article  ADS  Google Scholar 

  25. A.M. Sankpal, S.S. Suryavanshi, S.V. Kakatkar, G.G. Tengshe, R.S. Patil, N.D. Chaudhari, and S.R. Sawant, Magnetization Studies on Aluminium and Chromium Substituted Ni-Zn Ferrites, J. Magn. Magn. Mater.Magn. Magn. Mater., 1998, 186(3), p 349-356. https://doi.org/10.1016/S0304-8853(97)01156-6

    Article  ADS  Google Scholar 

  26. S.O. Asbahi and R.M. Kershi, The x-ray Diffraction Microstructure Analysis of Hexagonal Ferrite Powders Doped with la Rare Earth Ions, J. Chem. Crystallogr.Crystallogr., 2012, 42, p 155-158. https://doi.org/10.1007/s10870-011-0217-1

    Article  Google Scholar 

  27. R.M. Kershi, Rare-earth Ions as a Key Influencer on the Magnetic, Spectroscopic and Elastic Properties of ErγZn0.2Co0.8Fe2− γO4 Nanoparticles, J. Alloys Compd., 2021, 25(864), p 158114. https://doi.org/10.1016/j.jallcom.2020.158114

    Article  Google Scholar 

  28. C. Sujatha, K.V. Reddy, K.S. Babu, A.R. Reddy, and K.H. Rao, Effects of Heat Treatment Conditions on the Structural and Magnetic Properties of MgCuZn Nano Ferrite, Ceram. Int., 2012, 38(7), p 5813-5820. https://doi.org/10.1016/j.ceramint.2012.04.029

    Article  Google Scholar 

  29. T.P. Raming, A.J.A. Winnubst, C.M. Van Kats, and A.P. Philipse, The Synthesis and Magnetic Properties of Nanosized Hematite (α-Fe2O3) Particles, J. Colloid Interface Sci., 2002, 249(2), p 346-350. https://doi.org/10.1006/jcis.2001.8194

    Article  ADS  Google Scholar 

  30. J. Kalarus, G. Kogias, D. Holz, and V.T. Zaspalis, High Permeability-high Frequency Stable MnZn Ferrites, J. Magn. Magn. Mater.Magn. Magn. Mater., 2012, 324(18), p 2788-2794. https://doi.org/10.1016/j.jmmm.2012.04.011

    Article  ADS  Google Scholar 

  31. M.F. Al-Hilli, S. Li, and K.S. Kassim, Gadolinium Substitution and Sintering Temperature Dependent Electronic Properties of Li-Ni Ferrite, Mater. Chem. Phys., 2011, 128(1-2), p 127-132. https://doi.org/10.1016/j.matchemphys.2011.02.064

    Article  Google Scholar 

  32. J.G. Paik, M.J. Lee, and S.H. Hyun, Reaction Kinetics and Formation Mechanism of Magnesium Ferrites, Thermochim. Acta. Acta, 2005, 425(1-2), p 131-136. https://doi.org/10.1016/j.tca.2004.06.012

    Article  Google Scholar 

  33. W.C. Kim, S.W. Lee, S.J. Kim, S.H. Yoon, and C.S. Kim, Magnetic Properties of Y-, La-, Nd-, Gd-, and Bi-doped Ultrafine CoFe2O4 Spinel Grown by Using a Sol-gel Method, J. Magn. Magn. Mater.Magn. Magn. Mater., 2000, 215, p 217-220. https://doi.org/10.1016/S0304-8853(00)00121-9

    Article  ADS  Google Scholar 

  34. Y.K. Dasan, B.H. Guan, M.H. Zahari, and L.K. Chuan, Influence of La3+ Substitution on Structure, Morphology and Magnetic Properties of Nanocrystalline Ni-Zn Ferrite, PLoS ONE, 2017, 12(1), p 0170075. https://doi.org/10.1371/journal.pone.0170075

    Article  Google Scholar 

  35. Y. Qinghui, Z. Huaiwu, L. Yingli, W. Qiye, and J. Lijun, Microstructure and Magnetic Properties of Microwave Sintered NiCuZn Ferrite for Application in LTCC Devices, Mater. Lett., 2012, 79, p 103-105. https://doi.org/10.1016/j.matlet.2012.03.100

    Article  ADS  Google Scholar 

  36. A. Najafi Birgani, M. Niyaifar, and A. Hasanpour, Study of Cation Distribution of Spinel Zinc Nano-ferrite by x-ray, J. Magn. Magn. Mater.Magn. Magn. Mater., 2015, 374, p 179-181. https://doi.org/10.1016/j.jmmm.2014.07.066

    Article  ADS  Google Scholar 

  37. R.D. Waldron, Infrared Spectra of Ferrites, Phys. Rev., 1955, 99(6), p 1727-1735. https://doi.org/10.1103/PhysRev.99.1727

    Article  ADS  Google Scholar 

  38. K. Vijaya Babu, G. Satyanarayana, B. Sailaja, G.V. Santosh Kumar, K. Jalaiah, and M. Ravi, Structural and Magnetic Properties of Ni0.8M0.2Fe2O4 (M = Cu, Co) Nano-crystalline Ferrites, Results Phys., 2018, 9, p 55-62. https://doi.org/10.1016/j.rinp.2018.01.048

    Article  ADS  Google Scholar 

  39. M.N. Akhtar, M. Yousaf, Y. Lu, M.A. Khan, A. Sarosh, M. Arshad, M. Niamat, M. Farhan, A. Ahmad, and M.U. Khallidoon, Physical, Structural, Conductive and Magneto-optical Properties of Rare Earths (Yb, Gd) Doped Ni–Zn Spinel Nanoferrites for Data and Energy Storage Devices, Ceram. Int., 2021, 47(9), p 11878-11886.

    Article  Google Scholar 

  40. H. Irfan, K. Mohamed Racik, and S. Anand, Microstructural Evaluation of CoAl2O4 Nanoparticles by Williamson-Hall and Size–strain Plot Methods, J. Asian Ceram. Soc., 2018, 6(1), p 54-62. https://doi.org/10.1080/21870764.2018.1439606

    Article  Google Scholar 

  41. F.M. Ali and R.M. Kershi, A Surprising Role of Ferromagnetic Ions in Poly(vinyl alcohol) Polymer Films as Novel Composites for Photo-switches Applications, Polym. Sci. - Series A, 2023, 65(2), p 169-180. https://doi.org/10.1134/S0965545X23700852

    Article  Google Scholar 

  42. S. Joshi, M. Kumar, S. Chhoker, G. Srivastava, M. Jewariya, and V.N. Singh, Structural, Magnetic, Dielectric and Optical Properties of Nickel Ferrite Nanoparticles Synthesized by Co-precipitation Method, J. Mol. Struct.Struct., 2014, 1076, p 55-62. https://doi.org/10.1016/j.molstruc.2014.07.048

    Article  ADS  Google Scholar 

  43. Z.C. Chen, L.J. Zhuge, X.M. Wu, and Y.D. Meng, Initial Study on the Structure and Optical Properties of Zn1-xFexO Films, Thin Solid Films, 2007, 515(13), p 5462-5465. https://doi.org/10.1016/j.tsf.2007.01.015

    Article  ADS  Google Scholar 

  44. K.B. Modi, P.Y. Raval, S.J. Shah, C.R. Kathad, S.V. Dulera, M.V. Popat, K.B. Zankat, K.G. Saija, T.K. Pathak, N.H. Vasoya, V.K. Lakhani, U. Chandra, and P.K. Jha, Raman and Mossbauer Spectroscopy and x-ray Diffractometry Studies on Quenched Copper-Ferri-Aluminates, Inorg. Chem.. Chem., 2015, 54(4), p 1543-1555. https://doi.org/10.1021/ic502497a

    Article  Google Scholar 

  45. S. Thota, S.C. Kashyap, S.K. Sharma, and V.R. Reddy, Micro Raman, Mossbauer and Magnetic Studies of Manganese Substituted Zinc Ferrite Nanoparticles: Role of Mn, J. Phys. Chem. Solids, 2016, 91, p 136-144. https://doi.org/10.1016/j.jpcs.2015.12.013

    Article  ADS  Google Scholar 

  46. T. Yamanaka and M. Ishii, PI ICS CIIEIISI lgiliEPdU Raman Scattering and Lattice Vibrations of Si2SiO4 Spinel at Elevated Temperature, Phys. Chem. Minerals, 1986, 13, p 156-160.

    Article  ADS  Google Scholar 

  47. R.S. Yadav, I. Kuřitka, J. Vilcakova, J. Havlica, L. Kalina, P. Urbánek, M. Machovsky, D. Skoda, M. Masař, and M. Holek, Sonochemical Synthesis of Gd3+ Doped CoFe2O4 Spinel Ferrite Nanoparticles and its Physical Properties, Ultrasonics Sonochem., 2018, 1(40), p 773-783. https://doi.org/10.1016/j.ultsonch.2017.08.024

    Article  Google Scholar 

  48. A. Ahlawat and V.G. Sathe, Raman Study of NiFe2O4 Nanoparticles, Bulk and Films: Effect of Laser Power, J. Raman Spectrosc.Spectrosc., 2011, 42(5), p 1087-1094. https://doi.org/10.1002/jrs.2791

    Article  ADS  Google Scholar 

  49. J.L. Verble, Temperature-dependent Light-scattering Studies of the Verwey Transition and Electronic Disorder in Magnetite, Phys. Rev. B, 1974, 9(12), p 5236-5248. https://doi.org/10.1103/PhysRevB.9.5236

    Article  ADS  Google Scholar 

  50. J.T.S. Irvine, A. Huanosta, R. Valenzuela, and A.R. West, Electrical Properties of Polycrystalline Nickel Zinc Ferrites, J. Am. Ceram. Soc., 1990, 73(3), p 729-732. https://doi.org/10.1111/j.1151-2916.1990.tb06580.x

    Article  Google Scholar 

  51. M.T. Farid, I. Ahmad, M. Kanwal, and I. Ali, Effect of Praseodymium Ions on Manganese Based Spinel Ferrites, Chin. J. Phys., 2017, 55(3), p 813-824. https://doi.org/10.1016/j.cjph.2017.02.011

    Article  Google Scholar 

  52. Z. Wang, P. Lazor, S.K. Saxena, and G. Artioli, High-pressure Raman Spectroscopic Study of Spinel (ZnCr2O4), J. Solid State Chem., 2002, 165(1), p 165-170. https://doi.org/10.1006/jssc.2002.9527

    Article  ADS  Google Scholar 

  53. Z. Wang, D. Schiferl, Y. Zhao, and H.S.C. O’Neill, High Pressure Raman Spectroscopy of Spinel-type Ferrite ZnFe2O4, J. Phys. Chem. Solids, 2003, 64(12), p 2517-2523. https://doi.org/10.1016/j.jpcs.2003.08.005

    Article  ADS  Google Scholar 

  54. G. Ranga Mohan, D. Ravinder, A.V. Ramana Reddy, and B.S. Boyanov, Dielectric Properties of Polycrystalline Mixed Nickel-zinc Ferrites, Mater. Lett., 1999, 40(1), p 39-45. https://doi.org/10.1016/S0167-577X(99)00046-4

    Article  ADS  Google Scholar 

  55. M.A. Ahmed, N. Okasha, and R.M. Kershi, Extraordinary Role of Rare-earth Elements on the Transport Properties of Barium W-type Hexaferrite, Mater. Chem. Phys., 2009, 113(1), p 196-201. https://doi.org/10.1016/j.matchemphys.2008.07.032

    Article  Google Scholar 

  56. F.A. Sheikh, M. Khalid, Z.A. Gilani, S.M. Ali, M.A. Shar, H. Mufti, and A. Alhazaa, Dielectrically Modified Dy3+ Substituted Nickel-cobalt Ferrites for High Frequency Devices, Phys. B: Condensed Matter., 2023, 1(652), p 414656. https://doi.org/10.1016/j.physb.2023.414656

    Article  Google Scholar 

  57. Z.A. Gilani, M. Khalid, G. Hussain, M.A. Shar, S.M. Ali, M.A. Khan, F.A. Sheikh, and A. Alhazaa, Impact of Cerium Substitution Cobalt–zinc Spinel Ferrites for the Applications of High Frequency Devices, Phys. B: Condensed Matter., 2023, 1(660), p 414873. https://doi.org/10.1016/j.physb.2023.414873

    Article  Google Scholar 

  58. R. Karthik and V. Tummala, Voltage Dependent Maxwell-Wagner Polarization in Dielectric Heterostructures, Mater. Today Proc., 2017, 4(8), p 8751-8757. https://doi.org/10.1016/j.matpr.2017.07.224

    Article  Google Scholar 

  59. M. Hashim, S.E. Alimuddin, S.K. Shirsath, R. Kumar, A.S. Roy, J. Shah, and R.K. Kotnala, Preparation and Characterization Chemistry of Nano-crystalline Ni-Cu-Zn Ferrite, J. Alloys Compd., 2013, 549, p 348-357. https://doi.org/10.1016/j.jallcom.2012.08.039

    Article  Google Scholar 

  60. M.A. Ahmed, A.A. Azab, E.H. El-Khawas, and E.A. El Bast, Characterization and Transport Properties of Mixed Ferrite System Mn1-xCuxFe2O4; 0.0 ≤ x ≤ 0.7, Synth. React. Inorg., Met.-Org., Nano-Met. Chem., 2016, 46(3), p 376-384. https://doi.org/10.1080/15533174.2014.988243

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Kershi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kershi, R.M., Alsheri, A.M. & Attiyah, R.M. Preparation of Ni-Zn Ferrite Nanoparticles and Study of Their Properties for Optoelectronic Applications. J. Phase Equilib. Diffus. (2024). https://doi.org/10.1007/s11669-024-01150-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11669-024-01150-7

Keywords

Navigation