Abstract
Preparation conditions play a key role in tailoring the properties of ceramic materials, including ferrite, to suit efficient industrial and technological applications. This manuscript is concerned with correlating the structural, spectroscopic, optical, transport, and dielectric properties of nickel zinc ferrite nanoparticles (NZNs) to the sintering temperature as an effective preparation condition controlled through the coprecipitation technique. Techniques for studying the various features of the synthesized compounds include x-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, Fourier-transform infrared spectroscopy, ultraviolet-visible spectroscopy, and the LCR bridge. XRD data showed the as-prepared samples' single-phase inverse spinel structure and an increase in crystallinity with increasing sintering temperature. SEM images show the nanosized range with semi-spherical particles for all the NZN fabricated samples. Moreover, Raman spectroscopy results showed that the four distinct active modes (Eg, F2g(2), A1g(2), and A1g(1)) for the NZN compounds have the same lattice strain tendency. The direct and indirect optical energy gap values (2-3.82) eV of the synthesized compounds span a wide range in the visible and ultraviolet spectrum, making them candidates for optoelectronic applications. In general, sintering temperature plays an outstanding role in increasing the values of some features such as crystallite size, optical energy gap, and electrical conductivity, and correspondingly decreasing other features such as unit cell volume dissociation density, absorption bands, and dielectric parameters.
Similar content being viewed by others
References
V. Manikandan, J.H. Kim, A. Mirzaei, S.S. Kim, S. Vigneselvan, M. Singh, and J. Chandrasekaran, Effect of Temperature on Gas Sensing Properties of Lithium (Li) Substituted (NiFe2O4) Nickel Ferrite Thin Film, J. Mol. Struct.Struct., 2019, 5(1177), p 485-490. https://doi.org/10.1016/j.molstruc.2018.09.085
E. Oumezzine, S. Hcini, F.I.H. Rhouma, and M. Oumezzine, Frequency and Temperature Dependence of Conductance, Impedance and Electrical Modulus Studies of Ni0.6Cu0.4Fe2O4 Spinel Ferrite, J. Alloys Compd., 2017, 726, p 187-194. https://doi.org/10.1016/j.jallcom.2017.07.298
R. Islam, M. Obaidur Rahman, M. Abdul Hakim, D. Kumar Saha, S. Noor, and M. Al-Mamun, Effect of Sintering Temperature on Structural and Magnetic Properties of Ni0.55Zn0.45Fe2O4 Ferrites, Mater. Sci. Appl., 2012, 3, p 326-331.
M. Penchal Reddy, W. Madhuri, M. Venkata Ramana, N. Ramamanohar Reddy, K.V. Siva Kumar, V.R.K. Murthy, K. Siva Kumar, and R. Ramakrishna Reddy, Effect of Sintering Temperature on Structural and Magnetic Properties of NiCuZn and MgCuZn Ferrites, J. Magn. Magn. Mater.Magn. Magn. Mater., 2010, 322(19), p 2819-2823. https://doi.org/10.1016/j.jmmm.2010.04.036
F.L. Zabotto, A.J. Gualdi, and J.A. Eiras, Influence of the sintering Temperature on the Magnetic and Electric Properties of NiFe2O4 Ferrites, Mater. Res., 2012, 15(3), p 428-433. https://doi.org/10.1590/S1516-14392012005000043
P.B. Kharat, S.D. More, S.B. Somvanshi, and K.M. Jadhav, Exploration of Thermoacoustics Behavior of Water Based Nickel Ferrite Nanofluids by Ultrasonic Velocity Method, J. Mater. Sci. Mater. Electron., 2019, 30(7), p 6564-6574. https://doi.org/10.1007/s10854-019-00963-4
H. Ghayour, M. Abdellahi, N. Ozada, S. Jabbrzare, and A. Khandan, Hyperthermia Application of Zinc Doped Nickel Ferrite Nanoparticles, J. Phys. Chem. Solids, 2017, 111(August), p 464-472. https://doi.org/10.1016/j.jpcs.2017.08.018
N.M. Mahmoodi, M. Bashiri, and S.J. Moeen, Synthesis of Nickel-Zinc Ferrite Magnetic Nanoparticle and Dye Degradation Using Photocatalytic Ozonation, Mater. Res. Bull., 2012, 47(12), p 4403-4408. https://doi.org/10.1016/j.materresbull.2012.09.036
Ch. Srinivas, B.V. Tirupanyam, S.S. Meena, S.M. Yusuf, Ch. Seshu Babu, K.S. Ramakrishna, D.M. Potukuchi, and D.L. Sastry, Structural and Magnetic Characterization of Co-precipitated NixZn1-xFe2O4 Ferrite Nanoparticles, J. Magn. Magn. Mater.Magn. Magn. Mater., 2016, 407, p 135-141. https://doi.org/10.1016/j.jmmm.2016.01.060
R. Sharma and S. Singhal, Structural, Magnetic and Electrical Properties of Zinc Doped Nickel Ferrite and Their Application in Photo Catalytic Degradation of Methylene Blue, Phys. B Condens. Matter, 2013, 414, p 83-90. https://doi.org/10.1016/j.physb.2013.01.015
N. Chandamma, B.M. Manohara, B.S. Ujjinappa, G.J. Shankarmurthy, and M.V. Santhosh Kumar, Structural and Electrical Properties of Zinc Doped Nickel Ferrites Nanoparticles Prepared via Facile Combustion Technique, J. Alloys Compd., 2017, 702, p 479-488. https://doi.org/10.1016/j.jallcom.2016.12.392
A.B. Trabelsi, V. Balasubramani, F.H. Alkallas, A. Sivakumar, M. Shkir, V. Manjunath, and S.H. Park, Investigation on Effect of Sintering Temperature on Structural, Morphological and Magnetic Properties of Pure and Tin Doped Nickel Ferrites for Soft Magnetic Device Applications, Surf. Interfaces., 2023, 36, p 102511. https://doi.org/10.1016/j.surfin.2022.102511
K. Vepulanont, S. Sa-Nguanprang, S. Buapoon, T. Bunluesak, P. Suebsom, K. Chaisong, N. Udomsri, N. Karnchana, D. Laokae, and T. Chanadee, Nickel Ferrite Ceramics: Combustion Synthesis, Sintering, Characterization, and Magnetic and Electrical Properties, J. Asian Ceramic Soc., 2021, 9(2), p 639-651. https://doi.org/10.1080/21870764.2021.1907031
N. Khatun, M.S. Hossain, M.H. Begum, S. Islam, N.I. Tanvir, R.H. Bhuiyan, and M. Al-Mamun, Effect of Sintering Temperature on Structural, Magnetic, Dielectric and Optical Properties of Ni–Mn–Zn Ferrites, J. Adv. Dielectrics, 2021, 11(06), p 2150028. https://doi.org/10.1142/S2010135X21500284
G. Liu, B. Dai, Y. Ren, H. He, and W. Zhang, Microstructure and Magnetic Properties of Ni0.75Zn0.25Fe2O4 Ferrite Prepared Using an Electric Current-Assisted Sintering Method, Ceram. Int., 2021, 47(9), p 11951-11957. https://doi.org/10.1016/j.ceramint.2021.01.036
R.M. Kershi, A.M. Alshehri, and R.M. Attiyah, Enhancement of Ni–Zn Ferrite Nanoparticles Parameters via Cerium Element for Optoelectronic and Energy Applications, Discov. Nano., 2023, 18(1), p 139. https://doi.org/10.1186/s11671-023-03921-6
R. Sato Turtelli, G.V. Duong, W. Nunes, R. Grössinger, and M. Knobel, Magnetic Properties of Nanocrystalline CoFe2O4 Synthesized by Modified Citrate-Gel Method, J. Magn. Magn. Mater.Magn. Magn. Mater., 2008, 320(14), p 339-342. https://doi.org/10.1016/j.jmmm.2008.02.067
R.M. Kershi, Spectroscopic, Elastic, Magnetic and Optical Studies of Nanocrystallite and Nanoferro-fluids Co Ferrites Towards Optoelectronic Applications, Mater. Chem. Phys., 2020, 1(248), p 122941. https://doi.org/10.1016/j.matchemphys.2020.122941
S.B. Khan, S. Irfan, and S.L. Lee, Influence of Zn+ 2 Doping on Ni-based Nanoferrites;(Ni1− x ZnxFe2O4), Nanomaterials, 2019, 9(7), p 1024. https://doi.org/10.3390/nano9071024
R.M. Kershi, and S.H. Aldirham, Transport and Dielectric Properties of Nanocrystallite Cobalt Ferrites: Correlation with Cations Distribution and Crystallite Size, Mater. Chem. Phys., 2019, 1(238), p 121902. https://doi.org/10.1016/j.matchemphys.2019.121902
A. Zubair, Z. Ahmad, A. Mahmood, W.C. Cheong, I. Ali, M.A. Khan, A.H. Chughtai, and M.N. Ashiq, Structural, Morphological and Magnetic Properties of Eu-doped CoFe2O4 Nano-ferrites, Results Phys., 2017, 1(7), p 3203-3208. https://doi.org/10.1016/j.rinp.2017.08.035
Y. Slimani, M.A. Almessiere, M. Sertkol, S.E. Shirsath, A. Baykal, M. Nawaz, S. Akhtar, B. Ozcelik, and I. Ercan, Structural, Magnetic, Optical Properties and Cation Distribution of Nanosized Ni0.3Cu0.3Zn0.4TmxFe2−xO4 (00 ≤ x ≤ 0.10) Spinel Ferrites Synthesized by Ultrasound Irradiation, Ultrason. Sonochem.. Sonochem., 2019, 57, p 203-211. https://doi.org/10.1016/j.ultsonch.2019.05.001
H.M. El-Sayed, and W.R. Agami, Controlling of Optical Energy Gap of Co-ferrite Quantum Dots in Poly (Methyl Methacrylate) Matrix, Superlatt. Microstruct., 2015, 83, p 651-658. https://doi.org/10.1016/j.spmi.2015.04.013
J.H. Nam, S.J. Park, and W.K. Kim, Microstructure and Magnetic Properties of Nanostructured NiZnCu Ferrite Powders Synthesized by Sol-Gel Process, IEEE Trans. Magn.Magn., 2003, 39, p 3139-3141. https://doi.org/10.1109/TMAG.2003.816032
A.M. Sankpal, S.S. Suryavanshi, S.V. Kakatkar, G.G. Tengshe, R.S. Patil, N.D. Chaudhari, and S.R. Sawant, Magnetization Studies on Aluminium and Chromium Substituted Ni-Zn Ferrites, J. Magn. Magn. Mater.Magn. Magn. Mater., 1998, 186(3), p 349-356. https://doi.org/10.1016/S0304-8853(97)01156-6
S.O. Asbahi and R.M. Kershi, The x-ray Diffraction Microstructure Analysis of Hexagonal Ferrite Powders Doped with la Rare Earth Ions, J. Chem. Crystallogr.Crystallogr., 2012, 42, p 155-158. https://doi.org/10.1007/s10870-011-0217-1
R.M. Kershi, Rare-earth Ions as a Key Influencer on the Magnetic, Spectroscopic and Elastic Properties of ErγZn0.2Co0.8Fe2− γO4 Nanoparticles, J. Alloys Compd., 2021, 25(864), p 158114. https://doi.org/10.1016/j.jallcom.2020.158114
C. Sujatha, K.V. Reddy, K.S. Babu, A.R. Reddy, and K.H. Rao, Effects of Heat Treatment Conditions on the Structural and Magnetic Properties of MgCuZn Nano Ferrite, Ceram. Int., 2012, 38(7), p 5813-5820. https://doi.org/10.1016/j.ceramint.2012.04.029
T.P. Raming, A.J.A. Winnubst, C.M. Van Kats, and A.P. Philipse, The Synthesis and Magnetic Properties of Nanosized Hematite (α-Fe2O3) Particles, J. Colloid Interface Sci., 2002, 249(2), p 346-350. https://doi.org/10.1006/jcis.2001.8194
J. Kalarus, G. Kogias, D. Holz, and V.T. Zaspalis, High Permeability-high Frequency Stable MnZn Ferrites, J. Magn. Magn. Mater.Magn. Magn. Mater., 2012, 324(18), p 2788-2794. https://doi.org/10.1016/j.jmmm.2012.04.011
M.F. Al-Hilli, S. Li, and K.S. Kassim, Gadolinium Substitution and Sintering Temperature Dependent Electronic Properties of Li-Ni Ferrite, Mater. Chem. Phys., 2011, 128(1-2), p 127-132. https://doi.org/10.1016/j.matchemphys.2011.02.064
J.G. Paik, M.J. Lee, and S.H. Hyun, Reaction Kinetics and Formation Mechanism of Magnesium Ferrites, Thermochim. Acta. Acta, 2005, 425(1-2), p 131-136. https://doi.org/10.1016/j.tca.2004.06.012
W.C. Kim, S.W. Lee, S.J. Kim, S.H. Yoon, and C.S. Kim, Magnetic Properties of Y-, La-, Nd-, Gd-, and Bi-doped Ultrafine CoFe2O4 Spinel Grown by Using a Sol-gel Method, J. Magn. Magn. Mater.Magn. Magn. Mater., 2000, 215, p 217-220. https://doi.org/10.1016/S0304-8853(00)00121-9
Y.K. Dasan, B.H. Guan, M.H. Zahari, and L.K. Chuan, Influence of La3+ Substitution on Structure, Morphology and Magnetic Properties of Nanocrystalline Ni-Zn Ferrite, PLoS ONE, 2017, 12(1), p 0170075. https://doi.org/10.1371/journal.pone.0170075
Y. Qinghui, Z. Huaiwu, L. Yingli, W. Qiye, and J. Lijun, Microstructure and Magnetic Properties of Microwave Sintered NiCuZn Ferrite for Application in LTCC Devices, Mater. Lett., 2012, 79, p 103-105. https://doi.org/10.1016/j.matlet.2012.03.100
A. Najafi Birgani, M. Niyaifar, and A. Hasanpour, Study of Cation Distribution of Spinel Zinc Nano-ferrite by x-ray, J. Magn. Magn. Mater.Magn. Magn. Mater., 2015, 374, p 179-181. https://doi.org/10.1016/j.jmmm.2014.07.066
R.D. Waldron, Infrared Spectra of Ferrites, Phys. Rev., 1955, 99(6), p 1727-1735. https://doi.org/10.1103/PhysRev.99.1727
K. Vijaya Babu, G. Satyanarayana, B. Sailaja, G.V. Santosh Kumar, K. Jalaiah, and M. Ravi, Structural and Magnetic Properties of Ni0.8M0.2Fe2O4 (M = Cu, Co) Nano-crystalline Ferrites, Results Phys., 2018, 9, p 55-62. https://doi.org/10.1016/j.rinp.2018.01.048
M.N. Akhtar, M. Yousaf, Y. Lu, M.A. Khan, A. Sarosh, M. Arshad, M. Niamat, M. Farhan, A. Ahmad, and M.U. Khallidoon, Physical, Structural, Conductive and Magneto-optical Properties of Rare Earths (Yb, Gd) Doped Ni–Zn Spinel Nanoferrites for Data and Energy Storage Devices, Ceram. Int., 2021, 47(9), p 11878-11886.
H. Irfan, K. Mohamed Racik, and S. Anand, Microstructural Evaluation of CoAl2O4 Nanoparticles by Williamson-Hall and Size–strain Plot Methods, J. Asian Ceram. Soc., 2018, 6(1), p 54-62. https://doi.org/10.1080/21870764.2018.1439606
F.M. Ali and R.M. Kershi, A Surprising Role of Ferromagnetic Ions in Poly(vinyl alcohol) Polymer Films as Novel Composites for Photo-switches Applications, Polym. Sci. - Series A, 2023, 65(2), p 169-180. https://doi.org/10.1134/S0965545X23700852
S. Joshi, M. Kumar, S. Chhoker, G. Srivastava, M. Jewariya, and V.N. Singh, Structural, Magnetic, Dielectric and Optical Properties of Nickel Ferrite Nanoparticles Synthesized by Co-precipitation Method, J. Mol. Struct.Struct., 2014, 1076, p 55-62. https://doi.org/10.1016/j.molstruc.2014.07.048
Z.C. Chen, L.J. Zhuge, X.M. Wu, and Y.D. Meng, Initial Study on the Structure and Optical Properties of Zn1-xFexO Films, Thin Solid Films, 2007, 515(13), p 5462-5465. https://doi.org/10.1016/j.tsf.2007.01.015
K.B. Modi, P.Y. Raval, S.J. Shah, C.R. Kathad, S.V. Dulera, M.V. Popat, K.B. Zankat, K.G. Saija, T.K. Pathak, N.H. Vasoya, V.K. Lakhani, U. Chandra, and P.K. Jha, Raman and Mossbauer Spectroscopy and x-ray Diffractometry Studies on Quenched Copper-Ferri-Aluminates, Inorg. Chem.. Chem., 2015, 54(4), p 1543-1555. https://doi.org/10.1021/ic502497a
S. Thota, S.C. Kashyap, S.K. Sharma, and V.R. Reddy, Micro Raman, Mossbauer and Magnetic Studies of Manganese Substituted Zinc Ferrite Nanoparticles: Role of Mn, J. Phys. Chem. Solids, 2016, 91, p 136-144. https://doi.org/10.1016/j.jpcs.2015.12.013
T. Yamanaka and M. Ishii, PI ICS CIIEIISI lgiliEPdU Raman Scattering and Lattice Vibrations of Si2SiO4 Spinel at Elevated Temperature, Phys. Chem. Minerals, 1986, 13, p 156-160.
R.S. Yadav, I. Kuřitka, J. Vilcakova, J. Havlica, L. Kalina, P. Urbánek, M. Machovsky, D. Skoda, M. Masař, and M. Holek, Sonochemical Synthesis of Gd3+ Doped CoFe2O4 Spinel Ferrite Nanoparticles and its Physical Properties, Ultrasonics Sonochem., 2018, 1(40), p 773-783. https://doi.org/10.1016/j.ultsonch.2017.08.024
A. Ahlawat and V.G. Sathe, Raman Study of NiFe2O4 Nanoparticles, Bulk and Films: Effect of Laser Power, J. Raman Spectrosc.Spectrosc., 2011, 42(5), p 1087-1094. https://doi.org/10.1002/jrs.2791
J.L. Verble, Temperature-dependent Light-scattering Studies of the Verwey Transition and Electronic Disorder in Magnetite, Phys. Rev. B, 1974, 9(12), p 5236-5248. https://doi.org/10.1103/PhysRevB.9.5236
J.T.S. Irvine, A. Huanosta, R. Valenzuela, and A.R. West, Electrical Properties of Polycrystalline Nickel Zinc Ferrites, J. Am. Ceram. Soc., 1990, 73(3), p 729-732. https://doi.org/10.1111/j.1151-2916.1990.tb06580.x
M.T. Farid, I. Ahmad, M. Kanwal, and I. Ali, Effect of Praseodymium Ions on Manganese Based Spinel Ferrites, Chin. J. Phys., 2017, 55(3), p 813-824. https://doi.org/10.1016/j.cjph.2017.02.011
Z. Wang, P. Lazor, S.K. Saxena, and G. Artioli, High-pressure Raman Spectroscopic Study of Spinel (ZnCr2O4), J. Solid State Chem., 2002, 165(1), p 165-170. https://doi.org/10.1006/jssc.2002.9527
Z. Wang, D. Schiferl, Y. Zhao, and H.S.C. O’Neill, High Pressure Raman Spectroscopy of Spinel-type Ferrite ZnFe2O4, J. Phys. Chem. Solids, 2003, 64(12), p 2517-2523. https://doi.org/10.1016/j.jpcs.2003.08.005
G. Ranga Mohan, D. Ravinder, A.V. Ramana Reddy, and B.S. Boyanov, Dielectric Properties of Polycrystalline Mixed Nickel-zinc Ferrites, Mater. Lett., 1999, 40(1), p 39-45. https://doi.org/10.1016/S0167-577X(99)00046-4
M.A. Ahmed, N. Okasha, and R.M. Kershi, Extraordinary Role of Rare-earth Elements on the Transport Properties of Barium W-type Hexaferrite, Mater. Chem. Phys., 2009, 113(1), p 196-201. https://doi.org/10.1016/j.matchemphys.2008.07.032
F.A. Sheikh, M. Khalid, Z.A. Gilani, S.M. Ali, M.A. Shar, H. Mufti, and A. Alhazaa, Dielectrically Modified Dy3+ Substituted Nickel-cobalt Ferrites for High Frequency Devices, Phys. B: Condensed Matter., 2023, 1(652), p 414656. https://doi.org/10.1016/j.physb.2023.414656
Z.A. Gilani, M. Khalid, G. Hussain, M.A. Shar, S.M. Ali, M.A. Khan, F.A. Sheikh, and A. Alhazaa, Impact of Cerium Substitution Cobalt–zinc Spinel Ferrites for the Applications of High Frequency Devices, Phys. B: Condensed Matter., 2023, 1(660), p 414873. https://doi.org/10.1016/j.physb.2023.414873
R. Karthik and V. Tummala, Voltage Dependent Maxwell-Wagner Polarization in Dielectric Heterostructures, Mater. Today Proc., 2017, 4(8), p 8751-8757. https://doi.org/10.1016/j.matpr.2017.07.224
M. Hashim, S.E. Alimuddin, S.K. Shirsath, R. Kumar, A.S. Roy, J. Shah, and R.K. Kotnala, Preparation and Characterization Chemistry of Nano-crystalline Ni-Cu-Zn Ferrite, J. Alloys Compd., 2013, 549, p 348-357. https://doi.org/10.1016/j.jallcom.2012.08.039
M.A. Ahmed, A.A. Azab, E.H. El-Khawas, and E.A. El Bast, Characterization and Transport Properties of Mixed Ferrite System Mn1-xCuxFe2O4; 0.0 ≤ x ≤ 0.7, Synth. React. Inorg., Met.-Org., Nano-Met. Chem., 2016, 46(3), p 376-384. https://doi.org/10.1080/15533174.2014.988243
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Kershi, R.M., Alsheri, A.M. & Attiyah, R.M. Preparation of Ni-Zn Ferrite Nanoparticles and Study of Their Properties for Optoelectronic Applications. J. Phase Equilib. Diffus. (2024). https://doi.org/10.1007/s11669-024-01150-7
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11669-024-01150-7