Skip to main content
Log in

Experimental Investigation and Thermodynamic Assessment of Phase Equilibria in the Al-Ta-V Ternary System

  • Original Research Article
  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The phase equilibria in the Al-Ta-V ternary system at 1000 °C and 1200 °C have been studied by using electron probe microanalysis and x-ray diffraction. τ-Al2.9Ta2.7V1.4 phase was found in the Al-Ta-V ternary system in both isothermal sections. The addition of V stabilizes the Al69Ta39 phase at 1000 °C. The line compound Al3(V,Ta) (D022-type) forms a continuous phase region from the Al-V side to the Al-Ta side at the two temperatures. Based on our experimental results, reported liquidus projection of the ternary Al-Ta-V system and thermodynamic data of the binary systems of Al-V, Al-Ta and V-Ta, a thermodynamic evaluation of Al-Ta-V system was carried out by CALPHAD method. A set of reliable thermodynamic parameters for the Al-Ta-V system was obtained. The current calculation results agree well with the available experimental data. The invariant reaction scheme of Al-Ta-V ternary system was presented. The present study could provide essential experimental and thermodynamic data for establishing a comprehensive Co-based superalloy database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida, Cobalt-Base High-Temperature Alloys, Science, 2006, 312(5770), p 90–91.

    Article  ADS  Google Scholar 

  2. J.E. Saal and C. Wolverton, Thermodynamic Stability of Co-Al-W L12γ′, Acta Mater., 2013, 61(7), p 2330–2338.

    Article  ADS  Google Scholar 

  3. K. Shinagawa, T. Omori, K. Oikawa, R. Kainuma, and K. Ishida, Ductility Enhancement by Boron Addition in Co-Al-W high-Temperature Alloys, Scr. Mater., 2009, 61(6), p 612–615.

    Article  Google Scholar 

  4. K. Shinagawa, T. Omori, J. Sato, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida, Phase Equilibria and Microstructure on γ′ Phase in Co-Ni-Al-W System, Mater. Trans., 2008, 49(6), p 1474–1479.

    Article  Google Scholar 

  5. A. Suzuki and T.M. Pollock, High-Temperature Strength and Deformation of γ/γ′ Two-Phase Co-Al-W-Base Alloys, Acta Mater., 2008, 56(6), p 1288–1297.

    Article  ADS  Google Scholar 

  6. M. Tsunekane, A. Suzuki, and T.M. Pollock, Single-Crystal Solidification of New Co–Al–W-Base Alloys, Intermetallics, 2011, 19(5), p 636–643.

    Article  Google Scholar 

  7. C.T. Sims, N.S. Stoloff, W.C.J.M. Hagel, Superalloys II, 1987.

  8. H. Yu, S. Ukai, S. Hayashi, and N. Oono, Effect of Al Content on the High-Temperature Oxidation of Co-20Cr-(5, 10)Al Oxide Dispersion Strengthened Superalloys, Corros. Sci., 2017, 118, p 49–59.

    Article  Google Scholar 

  9. J.R. Davis ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys, 2000.

  10. K. Frisk and A. Markströ, Effect of Cr and V on Phase Equilibria in Co–WC Based Hardmetals, Int. J. Mater. Res., 2008, 99(3), p 287–293.

    Article  Google Scholar 

  11. L. Zheng, G. Zhang, T.L. Lee, M.J. Gorley, Y. Wang, C. Xiao, and Z. Li, The Effects of Ta on the Stress Rupture Properties and Microstructural Stability of a Novel Ni-Base Superalloy for Land-Based High Temperature Applications, Mater. Des., 2014, 61, p 61–69.

    Article  Google Scholar 

  12. S.M. Cardonne, P. Kumar, C.A. Michaluk, and H.D. Schwartz, Tantalum and Its Alloys, Int J Refract Met Hard Mater, 1995, 13(4), p 187–194.

    Article  Google Scholar 

  13. K. Zelenitsas and P.J.I. Tsakiropoulos, Study of the Role of Ta and Cr Additions in the Microstructure of Nb-Ti-Si-Al In Situ Composites, Intermetallics, 2006, 14(6), p 639–659.

    Article  Google Scholar 

  14. Y. Kang, S. Qu, J. Song, Q. Huang, and Y. Han, Microstructure and Mechanical Properties of Nb-Ti-Si-Al-Hf-xCr-yV Multi-Element In Situ Composite, Mater. Sci. Eng. A, 2012, 534(1), p 323–328.

    Article  Google Scholar 

  15. A. Raman, X-ray Studies on a Few T-T super 5-Al Systems(x-ray Analysis of Crystal Structure Relationships Among Transition Elements in Binary and Ternary Aluminide Alloys), Z. Metallkd., 1966, 57, p 535–540.

    Google Scholar 

  16. B. Harbrecht, N. Rheindorf, and V. Wagner, tau-Al2.9Ta2.7V1.4, a New Type of Pentagonal Antiprismatic Columnar Structure, J. Alloys Compd., 1996, 234(1), p 6–11.

    Article  Google Scholar 

  17. D.A. van Abreu, D.F. Barros, J.C.P. Santos, K.E. Borowski, A.P.D. Silva, N. Chaia, C.A. Nunes, and G.C. Coelho, Liquidus Projection of the Al-Ta-V System, J. Phase Equilib. Diffus., 2023, 44(1), p 137–149.

    Article  Google Scholar 

  18. P.R. Subramanian, D.B. Miracle, and S. Mazdiyasni, Phase Relationships in the Al-Ta System, Metall. Trans. A, 1990, 21(2), p 539-545.

    Article  Google Scholar 

  19. S. Mahne, F. Krumeich, and B. Harbrecht, Phase Relations in the Al-Ta System: on the Translational Symmetries of Al3Ta2 and AlTa, J. Alloys Compd., 1993, 201(1), p 167-174.

    Article  Google Scholar 

  20. H. Nowotny and A. Neckel, Chemical Bonding in Interstitial Compounds, J. Inst. Met., 1969, 97(6), p 161-164.

    Google Scholar 

  21. S. Meschel and O. Kleppa, Standard Enthalpies of Formation of 5d Aluminides by High-Temperature Direct Synthesis Calorimetry, J. Alloys Compd., 1993, 197(1), p 75-81.

    Article  Google Scholar 

  22. Y. Du and R. Schmid-Fetzer, Thermodynamic Modeling of the Al-Ta System, J. Phase Equilib. Diffus., 1996, 17, p 311-324.

    Article  Google Scholar 

  23. V. Witusiewicz, A. Bondar, U. Hecht, J. Zollinger, V. Petyukh, O. Fomichov, V. Voblikov, and S. Rex, Experimental Study and Thermodynamic Re-Assessment of the Binary Al-Ta System, Intermetallics, 2010, 18(1), p 92-106.

    Article  Google Scholar 

  24. J.L. Murray, Al-V (Aluminum-vanadium), Bull Alloy Phase Diagr, 1989, 10(4), p 351-357.

    Article  Google Scholar 

  25. L. Hartsough and R. Hammond, The Synthesis of Low Temperature Phases by the CO-Condensation of the Elements: A New Superconducting A15 Compound, V3Al, Solid State Commun., 1971, 9(12), p 885-889.

    Article  ADS  Google Scholar 

  26. V. Eremenko, Y.N. Natanzon and V. Titov, Kinetics of Dissolution of Vanadium in Liquid Aluminum, Russ. Metall., 1981, 5, p 34-37.

    Google Scholar 

  27. D. Bailey, O. Carlson and J. Smith, The Aluminium-Rich End of the Aluminium-Vanadium System, Trans ASM, 1959, 51, p 1097-1102.

    Google Scholar 

  28. A. Ray and J. Smith, A Test for Electron Transfer in V4Al23, Acta Crystallogr., 1960, 13(11), p 876-884.

    Article  Google Scholar 

  29. K. Richter and H. Ipser, The Al-V Phase Diagram Between 0 and 50 Atomic Percent Vanadium, Z. Metallkd., 2000, 91, p 383-388.

    Google Scholar 

  30. W. Gong, Y. Du, B. Huang, R. Schmid-Fetzer, C. Zhang, and H. Xu, Thermodynamic Reassessment of the Al–V System, Int. J. Mater. Res., 2022, 95(11), p 978-986.

    Google Scholar 

  31. B. Lindahl, X.L. Liu, Z.-K. Liu, and M. Selleby, A Thermodynamic Re-Assessment of Al–V Toward an Assessment of the Ternary Al–Ti–V System, Calphad, 2015, 51, p 75-88.

    Article  Google Scholar 

  32. A. Kroupa, M. Mazalová, and K. Richter, The Reassessment of the Al-V System and New Assessment of the Al-Si-V System, Calphad, 2017, 59, p 47-60.

    Article  Google Scholar 

  33. V. Eremenko, L. Tretyachenko, and R. Yakhimovich, Fusion Diagram of the Tantalum-Vanadium System, Russ. J. Inorg. Chem., 1960, 5, p 1110-1112.

    Google Scholar 

  34. E. Savitzkii and J. Efimov, Superconducting Metallic Compounds and Their Alloys, Monatsh. Chem., 1972, 103, p 270-287.

    Google Scholar 

  35. C. Danon and C. Servant, A Thermodynamic Evaluation of the Ta–V System, J. Alloys Compd., 2004, 366(1–2), p 191-200.

    Article  Google Scholar 

  36. H. Okamoto, Al-Ta (Aluminum-Tantalum), J. Phase Equilib. Diffus., 2010, 31(6), p 578-579.

    Article  Google Scholar 

  37. H. Okamoto, Ta-V (Tantalum-Vanadium), J. Phase Equilib. Diffus., 2005, 26(3), p 298-299.

    Article  Google Scholar 

  38. J. Smith and O. Carlson, The Ta-V (Tantalum-Vanadium) System, Bull Alloy Phase Diagr, 1983, 4(3), p 284-289.

    Article  Google Scholar 

  39. SGTE Pure Element Database - SGTE - Scientific Group Thermodata Europe, (n.d.). https://www.sgte.net/en/free-pure-substance-database (accessed January 6, 2022).

  40. O. Redlich and A. Kister, Algebraic Representation of Thermodynamic Properties and the Classification of Solutions, Ind. Eng. Chem., 1948, 40(2), p 345-348.

    Article  Google Scholar 

  41. M. Hillert, Empirical Methods of Predicting and Representing thermodynamic Properties of Ternary Solution Phases, Calphad, 1980, 4(1), p 1-12.

    Article  Google Scholar 

  42. M. Hillert and L. Staffansson, Regular-Solution Model for Stoichiometric Phases and Ionic Melts, Acta Chem. Scand., 1970, 24(10), p 3618-3626.

    Article  Google Scholar 

  43. C. Wang, X. Chen, P. Yang, Q. Zhang, S. Yang, Y. Lu, Y. Guo, and X. Liu, Experimental Investigation and Thermodynamic Assessment of Phase Equilibria in the Al-Co-Ta Ternary System, J. Alloys Compd., 2022, 925, p 166723.

    Article  Google Scholar 

  44. Y. Zhang, X. Chen, H. Ren, H. Liu, S. Yang, Y. Lu, J. Han, C. Wang, and X. Liu, Experimental Investigation and Thermodynamic Assessment of Phase Equilibria in the Cr-Mo-Ru Ternary System, J. Phase Equilib. Diffus., 2022, 43(6), p 691-704.

    Article  Google Scholar 

  45. C.P. Wang, Z.C. Zheng, S.Y. Yang, J.J. Han, Y. Lu, Y.X. Huang, J.B. Zhang, and X.J. Liu, Phase Equilibria of the Al-Cr-Ta Ternary System at 1000 and 1200 °C, J. Phase Equilib. Diffus., 2021, 42(1), p 107-117.

    Article  Google Scholar 

  46. S. Kirklin, J.E. Saal, B. Meredig, A. Thompson, J.W. Doak, M. Aykol, S. Ruehl, and C. Wolverton, The Open Quantum Materials Database (OQMD): Assessing the Accuracy of DFT Formation Energies, npj Comput Mater, 2015, 1, p 15010.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant Number 51831007), the Shenzhen Science and Technology Program (Grant No. SGDX20210823104002016), and the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2021B1515120071).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Lu or Xingjun Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Zheng, D., Zheng, Z. et al. Experimental Investigation and Thermodynamic Assessment of Phase Equilibria in the Al-Ta-V Ternary System. J. Phase Equilib. Diffus. 45, 156–174 (2024). https://doi.org/10.1007/s11669-024-01102-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-024-01102-1

Keywords

Navigation