Skip to main content
Log in

Phase Relationship in the Zr-Mo-Fe(O) System (Zr > 30 at.%) at 1000 °C

  • Original Research Article
  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The impact of oxygen impurity on phase relationships in the Zr-Mo-Fe system (Zr > 30 at.%) at 1000 °C was investigated by means of x-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy analysis. An oxygen-stabilized ternary compound γ-Zr2(Mo,Fe), derived from Ti2Ni type Zr4Fe2O, with cell parameter of a = 1.2213 nm was observed to be present in the investigated Zr-Mo-Fe alloys. The phase relationships of the Zr-Mo-Fe (O) system at 1000 °C in the Zr-rich corner consist of 3 four-phase regions, i.e., [βZr + λ-Zr(Mo,Fe)2 + γ-Zr2(Mo,Fe) + ZrMo2], [βZr + λ-Zr(Mo,Fe)2 + γ-Zr2(Mo,Fe) + Liquid], and [λ-Zr(Mo,Fe)2 + γ-Zr2(Mo,Fe) + Liquid + ZrFe2]. The previously detected Zr9Mo4Fe compound was not observed in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A.T. Motta, Waterside Corrosion in Zirconium Alloys, JOM, 2011, 63(8), p 63–67.

    Article  Google Scholar 

  2. J.P. Abriata, J. Garcés, and R. Versaci, The O-Zr (Oxygen-Zirconium) system, Bull. Alloy Phase Diagr., 1986, 1986(7), p 116–124.

    Article  Google Scholar 

  3. M. Billone, Y. Yan, T. Burtseva, R. Daum, Cladding Embrittlement during Postulated Loss-of-Coolant Accidents, NUREG/CR-6967, July 31, 2008; United States. (https://digital.library.unt.edu/ark:/67531/metadc901576/)

  4. G. Hache and H.M. Chung, The History of LOCA Embrittlement Criteria, NUREG/CP-0172, pp. 205-237 (2001)

  5. M. Slobodyan, Arc Welding of Zirconium and Its Alloys: A Review, Prog. Nucl. Energy, 2021, 133, p 103630.

    Article  Google Scholar 

  6. M. Pahutova, K. Kucharova, and J. Cadek, Creep and Creep Fracture in Zr-Sn-Mo and Zr-Sn-Mo-Nb Alloys at Temperatures of 623–823 K—II, Creep Fract. Kovove Mater., 1976, 14(6), p 702–716.

    Google Scholar 

  7. M. Pahutová, J. Čadek, and V. Černý, Creep and Creep Rupture of a Zr-6%Sn-1%Mo Alloy, J. Nucl. Mater., 1977, 68(1), p 111–121.

    Article  ADS  Google Scholar 

  8. M. Pahutová, and J. Čadek, Effect of Molybdenum on Some Basic Creep Characteristics of Alpha Zirconium in a Temperature Interval of 350 to 600 °C, Mater. Sci. Eng. C, 1975, 20, p 277–285.

    Article  Google Scholar 

  9. B. Cheadle, R. Holt, V. Fidleris, A. Causey, V. Urbanic, High-strength, creep-resistant excel pressure tubes, zirconium in the nuclear industry. in 4–7 Aug. 1980 (Boston), ASTM Committee B-10 on Reactive and Refractory Metals and Alloys (Sponsor), ed. by D. Franklin, West Conshohocken, PA, ASTM International, pp. 193–207 (1982).

  10. J.H. Lee, and S.K. Hwang, Effect of Mo Addition on the Corrosion Resistance of Zr-Based Alloy in Water Containing LiOH, J. Nucl. Mater., 2003, 321(2), p 238–248.

    Article  ADS  Google Scholar 

  11. A.V. Nikulina, V.F. Konkov, M.M. Peregud, and E.E. Vorobev, Effect of Molybdenum on Properties of Zirconium Components of Nuclear Reactor Core, Nucl. Mater. Energy, 2018, 14, p 8–13.

    Article  Google Scholar 

  12. J. Liang, H. Yu, A. Barry, E.C. Corcoran, L. Balogh, and M.R. Daymond, Re-investigation of Phase Transformations in the Zr-Excel Alloy, J. Alloys Compd., 2017, 716, p 7–12.

    Article  Google Scholar 

  13. F. Stein, G. Sauthoff, and M. Palm, Experimental Determination of Intermetallic Phases, Phase Equilibria, and Invariant Reaction Temperatures in the Fe-Zr System, J. Phase Equilib., 2002, 23(6), p 480–494.

    Article  Google Scholar 

  14. R.J. Perez, and B. Sundman, Thermodynamic Assessment of the Mo-Zr Binary Phase Diagram, Calphad, 2003, 27(3), p 253–262.

    Article  Google Scholar 

  15. A.F.A. Guillermet, The Fe-Mo (Iron-Molybdenum) System, Bull. Alloy Phase Diagr., 1982, 3(3), p 359–367.

    Article  Google Scholar 

  16. N.M. Gruzdeva, T.A. Tregubov, ЖEЛEЗO--MOЛИБДEH-ЦИPКOHИЙ (Iron-Molybdenum-Zirconium), Диaгpaммы cocтoяния мeтaлличecкиx cиcтeм (State Diagrams of Metal Systems), Aлиcoвa C.П., Бyдбepг П.Б., Aгeeв H.B. (peд) oпyбликoвaнныe в 1968 гoдy, Bыпycк 14, p 188. (In Russia) Alisova S.P., Budberg P.B., Ageev N.V. (ed), published in 1968, Issue 14, p. 188.

  17. P. Rogl, H. Nowotny, and F. Benesovsky, New K-Borides and Related Phases (Filled up Re3B-Phases), Mon. Chem., 1973, 104(1), p 182–193.

    Article  Google Scholar 

  18. M. Zinkevich, and N. Mattern, Thermodynamic Modeling of the Fe-Mo-Zr System, Acta Mater., 2002, 50(13), p 3373–3383.

    Article  ADS  Google Scholar 

  19. Z. Du, L. Zou, C. Guo, X. Ren, and C. Li, Experimental Investigation and Thermodynamic Description of the Fe-Mo-Zr System, Calphad, 2021, 74, p 102314.

    Article  Google Scholar 

  20. A. Boultif, and D.J. Louër, Indexing of Powder Diffraction Patterns for Low-Symmetry Lattices by the Successive Dichotomy Method, J. Appl. Crystallogr., 1991, 24, p 987–993.

    Article  Google Scholar 

  21. A. Boultif, and D. Louër, Powder Pattern Indexing with the Dichotomy Method, J. Appl. Crystallogr., 2004, 37, p 724–731.

    Article  Google Scholar 

  22. D. Louër, and A. Boultif, Indexing with the Successive Dichotomy Method, DICVOL04, Z. Kristallogr. Suppl., 2006, 23, p 225–230.

    Article  Google Scholar 

  23. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, and A. Cardona, Fiji: An Open-Source Platform for Biological-Image Analysis, Nat. Methods, 2012, 9(7), p 676–682.

    Article  Google Scholar 

  24. International Centre for Diffraction Data, 12 Campus Boulevard, Newtown Square, PA 19073--3273, USA.

  25. A.A. Lavrentyeve, B.V. Gabrelian, P.N. Shkumat, I.Y. Nikiforov, IYu. Zavaliy, and OYu. Khyzhun, Electronic Structure of Zr4Fe2O: Ab Initio APW+LO Calculations and x-ray Spectroscopy Studies, J. Phys. Chem. Solid., 2013, 74, p 590–594.

    Article  ADS  Google Scholar 

  26. H. Holleck, and F. Thummler, Ternäre Komplex-Carbide, -Nitride und -Oxide Mit Teilweise Aufgefüllter Ti2Ni-Struktur, Monatsch. Chem., 1967, 98, p 133–134.

    Article  Google Scholar 

  27. R. Mackay, G.J. Miller, and H.F. Franzen, New Oxides of the Filled-Ti2Ni Type Structure, J. Alloys Compd., 1994, 204(1–2), p 109–118.

    Article  Google Scholar 

  28. S. Gupta, D.J. Sordelet, and J.D. Corbett, Structural and Compositional Investigations of Zr4Pt2O: A Filled-Cubic Ti2Ni-Type Phase, J. Solid State Chem., 2009, 182, p 1708–1712.

    Article  ADS  Google Scholar 

  29. S. Wang, C. Zhang, C. Lin, Y. Peng, and Y. Du, Measurement of 900 °C Isothermal Section in the Mo-Ni-Zr System, J. Phase Equilib. Diffus., 2016, 37(5), p 672–679.

    Article  Google Scholar 

  30. C. Lin, C. Zhang, S. Wang, P. Zhou, and Y. Du, Phase Equilibria of the Co-Mo-Zr Ternary System at 1000 °C, J. Phase Equilib. Diffus., 2018, 39(5), p 510–518.

    Article  Google Scholar 

  31. J. Sayers, S. Lozano-Perez, and S.R. Ortner, The Progress of SPP Oxidation in Zircaloy-4 and Its Relation to Corrosion and Hydrogen Pickup, Corros. Sci., 2019, 158, p 108972.

    Article  Google Scholar 

  32. C. Proff, S. Abolhassani, and C. Lemaignan, Oxidation Behaviour of Zirconium Alloys and Their Precipitates—A Mechanistic Study, J. Nucl. Mater., 2013, 432(1–3), p 222–238.

    Article  ADS  Google Scholar 

Download references

Acknowledgment

This project is supported by Guangxi Natural Science Foundation (Grant No. 2018GXNSFAA138043), Open Foundation of Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University (Grant No. GXYSOF1803), Guangxi Provincial Science and Technology (Grant No. 2020KY04026, 2022KY0150), Natural Science Foundation of Guangdong Province (2022A1515010919, 2023A1515012089), and the Special Projects of Universities in Guangdong Province in Key Areas (2022ZDZX3014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinming Zhu or Jianlie Liang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Y., Zhu, J., Liang, J. et al. Phase Relationship in the Zr-Mo-Fe(O) System (Zr > 30 at.%) at 1000 °C. J. Phase Equilib. Diffus. 44, 483–495 (2023). https://doi.org/10.1007/s11669-023-01052-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-023-01052-0

Keywords

Navigation