Skip to main content
Log in

Experimental and Computational Study of Microstructure of Al2FeCoNiCu High-Entropy Alloy

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Microstructure and phase equilibria of Al2FeCoNiCu high-entropy alloy were investigated by a combination of experiments and multiscale computational materials. The CALPHAD and experimental results showed that a BCC dendritic phase formed during solidification, while a Cu-rich inter-dendritic phase with FCC structure precipitated at lower temperature. These FCC inter-dendritic phases were also surrounded by acicular precipitates with the same structure and composition. These acicular precipitates were stable during homogenization of the alloy at 550 °C, but they started to dissolve when heat-treated at 900 °C. Molecular simulation results revealed a disparate mechanism between nucleation of the FCC phase and its growth. While low annealing temperature (large undercooling of BCC) aided the nucleation process, diffusion-driven growth of the FCC crystals was faster at higher annealing temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E.P. George, D. Raabe, and R.O. Ritchie, High-Entropy Alloys, Nat. Rev. Mater., 2019, 4, p 515–534.

    Article  ADS  Google Scholar 

  2. D.B. Miracle, and O.N. Senkov, A critical Review of High Entropy Alloys and Related Concepts, Acta Mater., 2017, 122, p 448–511.

    Article  ADS  Google Scholar 

  3. M.-H. Tsai, Physical Properties of High Entropy Alloys, Entropy, 2013, 15, p 5338–5345.

    Article  ADS  MATH  Google Scholar 

  4. N.T.-C. Nguyen et al., Ultrahigh High-Strain-Rate Superplasticity in a Nanostructured High-Entropy Alloy, Nat. Commun., 2020, 11, p 1–7.

    Article  Google Scholar 

  5. Y. Shi, B. Yang, and P.K. Liaw, Corrosion-Resistant High-Entropy Alloys: A Review, Metals, 2017, 7, p 43.

    Article  Google Scholar 

  6. W.L. Nelson et al., Superconductivity in a Uranium Containing High Entropy Alloy, Sci. Rep., 2020, 10, p 1–8.

    Article  Google Scholar 

  7. Z. Fan, H. Wang, Y. Wu, X. Liu, and Z. Lu, Thermoelectric High-Entropy Alloys with Low Lattice Thermal Conductivity, RSC Adv., 2016, 6, p 52164–52170.

    Article  ADS  Google Scholar 

  8. P. Sharma, V. Dwivedi, and S.P. Dwivedi, Development of High Entropy Alloys: A Review, Mater Today: Proc, 2021, 43, p 502–509.

    Google Scholar 

  9. J. Yi et al., (2020) A Novel Al0. 5CrCuNiV 3d Transition Metal High-Entropy Alloy: Phase Analysis, Microstructure and Compressive Properties, J. Alloys Compd., 2020, 846, p 156466.

    Article  Google Scholar 

  10. J.W. Yeh et al., Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6, p 299–303.

    Article  Google Scholar 

  11. S. Gorsse, M. Nguyen, O.N. Senkov, and D.B. Miracle, Database on the Mechanical Properties of High Entropy Alloys and Complex Concentrated Alloys, Data Brief., 2018, 21, p 2664–2678.

    Article  Google Scholar 

  12. Y. Zhuang, W. Liu, Z. Chen, H. Xue, and J. He, Effect of Elemental Interaction on Microstructure and Mechanical Properties of FeCoNiCuAl Alloys, Mater. Sci. Eng., A, 2012, 556, p 395–399.

    Article  Google Scholar 

  13. F. Wang, and Y. Zhang, Effect of Co Addition on Crystal Structure and Mechanical Properties of Ti0. 5CrFeNiAlCo High Entropy Alloy, Mater. Sci. Eng.: A, 2008, 496, p 214–216.

    Article  Google Scholar 

  14. N. Krapivka, S. Firstov, M. Karpets, A. Myslivchenko, and V. Gorban, Features of Phase and Structure Formation in High-Entropy Alloys of the AlCrFeCoNiCu x System (x= 0, 0.5, 1.0, 2.0, 3.0), Phys. Met. Metallogr., 2015, 116, p 467–474.

    Article  ADS  Google Scholar 

  15. H.R. Sistla, J.W. Newkirk, and F.F. Liou, Effect of Al/Ni Ratio, Heat Treatment on Phase Transformations and Microstructure of AlxFeCoCrNi2− x (x= 0.3, 1) High Entropy Alloys, Mater. Des., 2015, 81, p 113–121.

    Article  Google Scholar 

  16. M. López Ríos et al., Effects of Nickel Content on the Microstructure, Microhardness and Corrosion Behavior of High-Entropy AlCoCrFeNix Alloys, Sci. Rep., 2020, 10, p 1–11.

    Article  Google Scholar 

  17. M. Beyramali Kivy, C.S. Kriewall, and M. Asle Zaeem, Formation of Chromium-Iron Carbide by Carbon Diffusion in Al X CoCrFeNiCu High-Entropy Alloys, Mater. Res. Lett., 2018, 6, p 321–326.

    Article  Google Scholar 

  18. Y. Zhang et al., Microstructures and Properties of High-Entropy Alloys, Prog. Mater Sci., 2014, 61, p 1–93.

    Article  Google Scholar 

  19. X. Fu, C.A. Schuh, and E.A. Olivetti, Materials Selection Considerations for High Entropy Alloys, Scr. Mater., 2017, 138, p 145–150.

    Article  Google Scholar 

  20. M. Beyramali Kivy, Y. Hong, and M. Asle Zaeem, A Review of Multi-Scale Computational Modeling Tools for Predicting Structures and Properties of Multi-Principal Element Alloys, Metals, 2019, 9, p 254.

    Article  Google Scholar 

  21. M.C. Gao, Design of high-entropy alloys, High-Entropy Alloys. Springer, Cham, 2016, p 369–398

  22. G. Anand, R. Goodall, and C.L. Freeman, Role of Configurational Entropy in Body-Centred Cubic or Face-Centred Cubic Phase Formation in High Entropy Alloys, Scr. Mater., 2016, 124, p 90–94. https://doi.org/10.1016/j.scriptamat.2016.07.001

    Article  Google Scholar 

  23. S. Chen et al., Simultaneously Enhancing the Ultimate Strength and Ductility of High-Entropy Alloys via Short-Range Ordering, Nat. Commun., 2021, 12, p 4953. https://doi.org/10.1038/s41467-021-25264-5

    Article  ADS  Google Scholar 

  24. F. Biermair, V.I. Razumovskiy, and G. Ressel, Influence of Alloying on Thermodynamic Properties of AlCoCrFeNiTi High Entropy Alloys from DFT Calculations, Comput. Mater. Sci., 2022, 202, p 110952.

    Article  Google Scholar 

  25. S. Chen et al., Simultaneously Enhancing the Ultimate Strength and Ductility of High-Entropy Alloys via Short-Range Ordering, Nat. Commun., 2021, 12, p 1–11.

    ADS  Google Scholar 

  26. Y. Zeng, M. Man, K. Bai, and Y.-W. Zhang, Revealing High-Fidelity Phase Selection Rules for High Entropy Alloys: A combined CALPHAD and Machine Learning Study, Mater. Des., 2021, 202, p 109532.

    Article  Google Scholar 

  27. C. Wen et al., Machine Learning Assisted Design of High Entropy Alloys with Desired Property, Acta Mater., 2019, 170, p 109–117.

    Article  ADS  Google Scholar 

  28. P. Mandal, A. Choudhury, A.B. Mallick M. Ghosh, Phase Prediction in High Entropy Alloys by Various Machine Learning Modules Using Thermodynamic and Configurational Parameters. Met. Mater. Int. 2023, 29, p 38–52.

  29. Thermo-Calc Software TCHEA6: High Entropy Alloy v4.2 2022.

  30. J.P. Perdew et al., Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation, Phys. Rev. B, 1992, 46, p 6671.

    Article  ADS  Google Scholar 

  31. D. Vanderbilt, Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism, Phys. Rev. B, 1990, 41, p 7892.

    Article  ADS  Google Scholar 

  32. P. Giannozzi et al., Quantum ESPRESSO Toward the Exascale, J. Chem. Phys., 2020, 152, p 154105.

    Article  ADS  Google Scholar 

  33. P. Giannozzi et al., Advanced Capabilities for Materials Modelling with Quantum ESPRESSO, J. Phys.: Condens. Matter., 2017, 29, p 465901.

    Google Scholar 

  34. Q. Espresso, A modular and Open-Source Software Project for Quantum Simulations of Materials/P Giannozzi [et al.], J. Phys. Condens. Matter., 2009, 21, p 395502.

    Article  Google Scholar 

  35. A. Van De Walle, M. Asta, and G. Ceder, The Alloy Theoretic Automated Toolkit: A User Guide, Calphad, 2002, 26, p 539–553.

    Article  Google Scholar 

  36. S. Tripathi, R.A. Cotter, S. Utamsing, M. Islam, M.B. Kivy, A. Strachan, Random and Special Quasirandom Structure Generator. 2019. https://nanohub.org/resources/sqsatat

  37. P. Hirel, Atomsk: A Tool for Manipulating and Converting Atomic Data Files, Comput. Phys. Commun., 2015, 197, p 212–219.

    Article  ADS  Google Scholar 

  38. M. Parrinello, and A. Rahman, Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method, J. Appl. Phys., 1981, 52, p 7182–7190.

    Article  ADS  Google Scholar 

  39. S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys., 1995, 117, p 1–19.

    Article  ADS  MATH  Google Scholar 

  40. M.S. Daw, S.M. Foiles, and M.I. Baskes, The Embedded-Atom Method: A Review of Theory and Applications, Mater. Sci. Rep., 1993, 9, p 251–310.

    Article  Google Scholar 

  41. A. Stukowski, Visualization and Analysis of Atomistic Simulation Data with OVITO–the Open Visualization Tool, Modell. Simul. Mater. Sci. Eng., 2009, 18, p 015012.

    Article  ADS  Google Scholar 

  42. H. Tsuzuki, P.S. Branicio, and J.P. Rino, Structural Characterization of Deformed Crystals by Analysis of Common Atomic Neighborhood, Comput. Phys. Commun., 2007, 177, p 518–523.

    Article  ADS  Google Scholar 

  43. A. Rodriguez-Lopez, B. Savoini, M. Monge, A. Muñoz, and P. Pérez, Exploring CuCrFeVTi System to Produce High Entropy Alloys for High Heat Flux Applications, Nucl. Mater. Energy, 2021, 29, p 101065.

    Article  Google Scholar 

  44. H. Zheng et al., Microstructure Evolution, Cu Segregation and Tensile Properties of CoCrFeNiCu High Entropy Alloy During Directional Solidification, J. Mater. Sci. Technol., 2020, 38, p 19–27.

    Article  ADS  Google Scholar 

  45. Y. Ye et al., Elemental Segregation in Solid-Solution High-Entropy Alloys: Experiments and Modeling, J. Alloy. Compd., 2016, 681, p 167–174.

    Article  Google Scholar 

  46. C.-W. Tsai et al., Deformation and Annealing Behaviors of High-Entropy Alloy Al0. 5CoCrCuFeNi, J. Alloys Compd., 2009, 486, p 427–435.

    Article  Google Scholar 

  47. C.-J. Tong et al., Microstructure Characterization of Al x CoCrCuFeNi High-Entropy Alloy System with Multiprincipal Elements, Metall. Mater. Trans. A., 2005, 36, p 881–893.

    Article  Google Scholar 

  48. M.-H. Tsai et al., Morphology, Structure and Composition of Precipitates in Al0. 3CoCrCu0. 5FeNi High-Entropy Alloy, Intermetallics, 2013, 32, p 329–336.

    Article  Google Scholar 

  49. G. Parker, Encyclopedia of Materials: Science and Technology. Elsilver, Amsterdam, 2001.

    Google Scholar 

  50. C.-F. Lee, and T.-T. Shun, Age Heat Treatment of Al0. 5CoCrFe1.5NiTi0.5 High-Entropy Alloy, Metals, 2021, 11, p 91.

    Article  Google Scholar 

  51. A. Asabre et al., Effect of Al, Ti and C Additions on Widmanstätten Microstructures and Mechanical Properties of Cast Al0. 6CoCrFeNi Compositionally Complex Alloys, Mater. Des., 2019, 184, p 108201.

    Article  Google Scholar 

  52. A.S. Sabau, Predicting Interdendritic Cavity Defects During Casting Solidification, JOM, 2004, 56, p 54–56.

    Article  Google Scholar 

  53. M.B. Kivy, M.A. Zaeem, and S. Lekakh, Investigating Phase Formations in Cast AlFeCoNiCu High Entropy Alloys by Combination of Computational Modeling and Experiments, Mater. Des., 2017, 127, p 224–232.

    Article  Google Scholar 

  54. W.-R. Wang et al., Effects of Al Addition on the Microstructure and Mechanical Property of AlxCoCrFeNi High-Entropy Alloys, Intermetallics, 2012, 26, p 44–51.

    Article  Google Scholar 

  55. X. Yan et al., Al0 3CrxFeCoNi High-Entropy Alloys with High Corrosion Resistance and Good Mechanical Properties, J. Alloys Compd., 2021, 860, p 158436.

    Article  Google Scholar 

  56. S. Yang et al., Effect of Cr Content on Corrosion Behavior of AlCrxFeNi2Cu16 High Entropy Alloys, Mater. Res. Exp., 2019, 6, p 076501.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Trevor Harding, Dr. Ryan Smith, Mr. Eric Beaton, Mrs. Caitlin Kriewall, and the NACE club of the Materials Engineering Department for their assistance and/or inputs in this project. We are also thankful to ASM Materials Genome Toolkits award (2020).

Author information

Authors and Affiliations

Authors

Contributions

MBK, RT, JPJ, MK, LH performed all the experiments. MBK performed the CALPHAD and DFT calculations. AKM performed the MD simulations. MBK, AKM, RT, JPJ, MK, LH wrote the manuscript, and MBK coordinated the whole work.

Corresponding author

Correspondence to Mohsen B. Kivy.

Ethics declarations

Conflict of interest

The authors state no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kivy, M.B., Mahata, A.K., Thompson, R. et al. Experimental and Computational Study of Microstructure of Al2FeCoNiCu High-Entropy Alloy. J. Phase Equilib. Diffus. 44, 76–85 (2023). https://doi.org/10.1007/s11669-023-01024-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-023-01024-4

Keywords

Navigation